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Abstract

Introduction to basic algorithms and techniques for numerical
computing. Error analysis, interpolation (including splines),
numerical differentiation and integration, numerical linear al-
gebra (including methods for linear systems, eigenvalue prob-
lems, and the singular value decomposition), root finding for
nonlinear equations and systems, numerical ordinary differ-
ential equations, and approximation methods (including least
squares, orthogonal polynomials, and Fourier transforms).

Lecture 1

1 Computer arithmetic and error
analysis

1.1 Floating point number system [1, 2.4]

Example 1.1. Floating point number system

A = (β = 10, t = 3, L = −99, U = 99)

x = 7.304 · 104 is in this number system. In general:

x = mβe

where

• β = 10 is the base (decimal base),

• m = 7.304 is the mantissa,

• f = 304 is the fraction,

• t = 3 digits in the fraction,

• e = 4 is the exponent,

• L ≤ e ≤ U are the bounds.

Example 1.2. B = (β = 2, t = 2, L = −10, U = 10)

x = 1.01 · 22 = 101 (binary)

= 1 · 22 + 0 · 21 + 1 · 20

= 5 in decimal

1.1.1 Rules for the “normalized” mantissa

m = ±d0.d1d2 . . . dt = (−1)sd0.f where s is the sign bit (0 or
1) with

1 ≤ |m| < β

1 ≤ d0 ≤ β − 1

and 0 ≤ di ≤ β − 1 (i = 1, . . . , t)

for example in system A,

x = 1.000 · 106

is valid, but
x = 0.123 · 103

is not and must be normalized to

x = 1.230 · 102.

In computers, the floating point (f.p.) systems normally used
are:

1. single precision: (4 bytes, 32 bits)

(β = 2, t = 23, L = −126, U = 127)

where x = (−1)sd0.f · 2e is valid.

s f E
1 bit 23 bits 8 bits

Note that E = e+127. Also d0 = 1 always for normalized
numbers (in binary) =⇒ no need to store it.

Smallest positive (non-zero) number:

1.0 . . . 0 · 2−126 ≈ 1.2 · 10−38.

Largest positive number:

1.1 . . . 1 · 2127 = (2− 2−23)2127 ≈ 2128 ≈ 3.4 · 1038.

2. double precision: (8 bytes, 64 bits)

(β = 2, t = 52, L = −1022, U = 1023)

Smallest positive (non-zero) number:

2−1022 ≈ 2.2 · 10−308

Largest positive number:

(2− 2−52)21023 ≈ 21024 ≈ 1.8 · 10308

Note the greater range and greater relative accuracy. Note:
[1, 2.8]“IEEE Standard” for floating point numbers has some
additional subtle points. Single precision:

1 ≤ E ≤ 254 : x = (−1)s(1.f)2E−127 (normalized numbers)

E = 255 : f 6= 0 =⇒ x = NaN (not a number, e.g. 0/0)

f = 0 =⇒ x = (−1)sInf (infinity, e.g. 1/0)

E = 0 : f = 0 =⇒ x = 0

f 6= 0 =⇒ (denormalized numbers)

e.g. x = 0.0001760 . . . 0 · 2−126
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Lecture 2

1.2 Rounding in f.p. systems [1, 2.5]

A = (β = 10, t = 4, L = −10, U = 10)

Consider exact X = 11.3486. Represent X in system A by
“rounding to nearest” rounded, normalized representation of
X: x = 1.1349 · 101.

ex. x = 11.3484 → x = 1.1348 · 101

ex. x = 11.3485 → x = 1.1348 · 101

ex. x = 11.3475 → x = 1.1348 · 101

here we followed a rule: “round to nearest, tie to even” (de-
fault in IEEE).

Note: after rounding in f.p. system A, we say that x has
t+ 1 “correctly rounded digits”. Consider f.p. system

(β, t, L, U)

exact: X := Mβe (1 ≤ |M | < β)

rounded: x := mβe (t+ 1 (correct) digits in m)

Definition 1.3. Define absolute error :

∆X := x−X,

where x is the approximation and X is exact.

Define relative error :

δX :=
x−X
X

=
∆X

X

where X 6= 0.

Example 1.4. A = (β = 10, t = 3, L, U)

X = 4.732896 · 106

x = 4.733 · 106

|m−M | ≤ 0.5 · 10−3 after rounding.

In general, after rounding we have

|m−M | ≤ 1

2
β−t,

which implies

|x−X| ≤ 1

2
β−tβe

and so

∣∣∣∣x−XX
∣∣∣∣ ≤ 1

2β
−tβe

|M |βe
≤ 1

2
β−t

Definition 1.5. Define unit roundoff to be

µ :=
1

2
β−t

So for rounding we have that

|δX| =
∣∣∣∣x−XX

∣∣∣∣ ≤ 1

2
β−t =⇒ |δX| ≤ µ.

Note: single precision: t = 23,

µ = 2−24 ≈ 6.0 · 10−8 ≈ 0.5 · 10−7,

which is roughly equivalent to

(β = 10, t = 7) → µ = 0.5 · 10−7

“approximately t + 1 = 8 decimal digits can be represented
correctly in single precision binary”. double precision: t = 52

µ = 2−53 ≈ 1.1 · 10−16,

which is roughly equivalent to (β = 10, t = 16). Approxi-
mately t+ 1 = 17 decimal digits can be represented correctly
in double precision.

Note: in MATLAB, we have:

• format long with 16 or 17 digits

• format short with 7 or 8 digits

Note: there is also a fixed point number system.

Example 1.6.

x = ±d−1d0.d1 (no exponent),

where 0 ≤ di ≤ 9 for i ∈ {−1, 0, 1} (decimal base), and
t = 3 total digits, with range -99.9 to 99.9. Now consider the
accuracy after rounding:

|x−X| ≤ 1

2
β−1 =

1

2
10−1 = 0.05,

so absolute error is bound by unit round off.

Note: that the fixed point system has a fixed distance be-
tween representable numbers while in the floating point sys-
tem, there are more representable numbers closer to zero, and
less farther from zero. Recall that in the floating point system
we have

|δX| =
∣∣∣∣x−XX

∣∣∣∣ ≤ µ
or |x−X| ≤ |X|µ where |X|µ is small if X is small.

1.2.1 Representation of rounding effect

Consider X exact, x rounded in the floating point system.
We know ∣∣∣∣x−XX

∣∣∣∣ ≤ µ.
We also write:

x = fl(X) = X(1 + ε) with |ε| ≤ µ
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1.3 Rounding in basic arithmetic operations
[1, 2.6]

It is possible to implement x+ y (x and y in computer repre-
sentation) on a computer CPU s.t.∣∣∣∣fl(x+ y)− (x+ y)

x+ y

∣∣∣∣ ≤ µ
or fl(x+ y) = (x+ y)(1 + ε) with |ε| ≤ µ.

the same holds for xy, x− y and x/y

1.4 Loss of information / accuracy [1, 2.3]

In some f.p. operations, information / accuracy is lost, some-
times this is unavoidable, but sometimes, algorithms can be
reformulated to avoid these ‘catastrophic’ steps.

Example 1.7. Loss of information:
Consider a, b, and c in

(β = 10, t = 3, L, U), µ =
1

2
β−t =

1

2
10−3

a = 9.876 · 104 = 98760

b = −9.880 · 104 = −98800

c = 3.456 · 101 = 34.56

Consider a+ c:

fl(a+ c) = fl(9879 4.56︸︷︷︸
lost

) = 9.879 · 104

information is lost, which in this case is unavoidable, but not
a big deal. Relative error:∣∣∣∣a+ c− fl(a+ c)

a+ c

∣∣∣∣ ≈ 1

2
10−4 ≤ µ

Now consider a+ b+ c:

(1) (a+ b) + c:

fl(fl(a+ b) + c) = fl(−4 · 101 + 3.456 · 101)

= −0.544 · 101

= a+ b+ c (exact)

(2) (a+ c) + b:

fl(fl(a+ c) + b) = fl(9.879 · 104 − 9.880 · 104)

= −1.0 · 101 (only 1 correct digit)

relative error:∣∣∣∣a+ b+ c− fl(fl(a+ c) + b)

a+ b+ c

∣∣∣∣ ≈ 0.84

84% relative error due to loss of information and cancel-
lation.

So the order of operations may matter, and subtracting two
almost equal numbers can result in large error.

Example 1.8. Loss of information via catastrophic cancel-
lation:

We introduce new notation for the general context of error
propagation: rounding error, measurement error, discretiza-
tion error, and accumulation of rounding error.

exact: x

approximate: x̄

absolute error: ∆x = x̄− x

Notation 1.9. We say x̄ approximates x with

|x̄− x| = |∆x| ≤ ν ⇐⇒ x = x̄± ν.

1.4.1 Catastrophic cancellation

If you subtract two almost equal numbers, the relative error
in the result may be very large.

y = x1 − x2

ȳ = x̄1 − x̄2

∆y = ȳ − y = (x̄1 − x̄2)− (x1 − x2) = ∆x1 −∆x2

Note that ∆x1 is not known, we only know that |∆x1| ≤ ν.

|∆y| ≤ |∆x1|+ |∆x2|

|δy| ≤ |∆x1|+ |∆x2|
|x1 − x2|

Note that |x1−x2| is small if x1 ≈ x2 and is smaller than |x1|
or |x2|. For example:

x1 = 10.123456± 0.5 · 10−6

x2 = 10.123788± 0.5 · 10−6

|δx2| =
|∆x2|
|x2|

≤ 0.5 · 10−7

y = x1 − x2 = −0.000332± 10−6 (only 3 digits left)

|δy| = |∆y|
|y|
≤ 0.5 · 10−6 + 0.5 · 10−6

0.000332
= 10−3 � 0.5 · 10−6

Example 1.10. Sometimes catastrophic cancellation can be
avoided. Consider the equation x2− 18x+ 1 = 0. With roots
x1 = 17.944271 . . . and x2 = 0.0557280 . . . .

We use (β = 10, t = 3, L, U).
Consider algorithm (1):

x1 = 9 +
√

80

x̄1 = fl(9 +
√

80) = fl(9 + 8.944) = 17.94

|δx1| ≈ 0.24 · 10−3

And similarly

x2 = 9−
√

80

x̄2 = fl(9−
√

80) = fl(9− 8.944) = 0.056

|δx2| ≈ 0.5 · 10−2

As we can see x̄2 has only 2 correct digits.
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Algorithm (2):

x2 =
1

x1

x̄2 = fl(1/x1) = 0.05574

|δx2| ≈ 0.21 · 10−3 ≤ µ

Where we have 4 correct digits.

Lecture 3

1.5 Error propagation [1, 2.3]

(1) Take y = f(x) and let x = x̄± ε, with |x̄−x| = |∆x| ≤ ε.
For example, x̄ is obtained from x by rounding in floating
point systems =⇒ ε = µ|x|.
How does the error in x propagate to an error in y?

What can we say about

|∆y| = |y(x̄)− y(x)| = |∆f | = |f(x̄)− f(x)|?

Assume f(x) is differentiable. We use the Mean Value
Theorem (MVT):

∃ξ ∈ (x, x̄) : f ′(ξ) =
f(x̄)− f(x)

x̄− x

or equivalently, ∃ξ ∈ (x, x̄) : ∆f = f ′(ξ)∆x, so

|∆f | = |f ′(ξ)||∆x|

or, approximately

|∆f | ≈ |f ′(x)||∆x|
or |∆f | ≈ |f ′(x̄)||∆x|

Figure 1.1: Mean Value Theorem.

(2) Take y = f(x1, x2), we consider two approaches:

(a) We use definition and inequalities, For example:

y = x1 + x2 y = ȳ −∆y

x1 = x̄1 −∆x1

x2 = x̄2 −∆x2

∆y = ȳ − y = x̄1 + x̄2 − (x1 + x2) = ∆x1 + ∆x2

=⇒ ∆y = ∆x1 + ∆x2

=⇒ |∆y| ≤ |∆x1|+ |∆x2|

Another example:

y = x1x2

∆y = x̄1x̄2 − (x1x2) = (x1 + ∆x1)(x2 + ∆x2)− x1x2

= x1∆x2 + x2∆x1 + ∆x1∆x2

∆y

y
=

∆x1

x1
+

∆x2

x2
+

∆x1∆x2

x1x2

assume
∣∣∣∆x1

x1

∣∣∣� 1 and
∣∣∣∆x2

x2

∣∣∣� 1, then

∆y

y
≈ ∆x1

x1
+

∆x2

x2

also: ∣∣∣∣∆yy
∣∣∣∣ . ∣∣∣∣∆x1

x1

∣∣∣∣+

∣∣∣∣∆x2

x2

∣∣∣∣ .
(b) Use multivariate MVT:

Theorem 1.11. Let f(~x) be differentiable, where
~x ∈ Rn. Then ∃θ ∈ (0, 1) such that

f(~̄x)− f(~x) = ∇f(~x+ θ∆~x) ·∆~x

=

n∑
k=1

∂f

∂xk
(~x+ θ∆~x)∆xk

Note that ∆~x = ~̄x− ~x. We denote ~x∗ := ~x+ θ∆~x.

Proof. Note: f(~x+t∆~x) is a single-variable function
in t. Let F (t) = f(~x+ t∆~x). Then ∃θ ∈ (0, 1) s.t.

F (1)− F (0)

1− 0
=
dF (t)

dt

∣∣∣∣
t=θ

(by MVT).

or f(~̄x)− f(~x) =

n∑
k=1

∂f

∂xk
(~x+ θ∆~x)∆xk

Therefore:

∆f ≈
n∑
k=1

∂f

∂xk
(~̄x)∆xk or ∆f ≈

n∑
k=1

∂f

∂xk
(~x)∆xk

and so

|∆f | .
n∑
k=1

∣∣∣∣ ∂f∂xk (~x)

∣∣∣∣ |∆xk|
or |∆f | .

n∑
k=1

∣∣∣∣ ∂f∂xk (~̄x)

∣∣∣∣ |∆xk|
For example: y = f(x1, x2) = x1x2.

∂f

∂x1
= x2 ∆f ≈ x2∆x1 + x1∆x2

∂f

∂x2
= x1 and

∆f

f
≈ ∆x1

x1
+

∆x1

x2
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2 Root finding methods

2.1 Problem description [1, 4.1]

Problem: find the root x∗, such that f(x∗) = 0, where f is a
non-linear function.

For example: f(x) = x− cos(x) = 0 =⇒ x∗ ≈ 0.74. Often
no closed-form solution exists so iteration will be necessary.

Definition 2.1. “x∗ is a root of f(x) with multiplicity q”
means f(x) = (x−x∗)qg(x) where g(x∗) 6= 0 and |g(x∗)| <∞.

Example 2.2.

f(x) = (x− 3)2 sin(x)

g

x = 3 is a double root.

= (x− 3)3 sin(x)

x− 3
g

not a triple root.

= (x− 3) sin(x)(x− 3)

g

not a single root.

Note: f ′(x) = q(x− x∗)q−1g(x) + (x− x∗)qg′(x)

q > 1 =⇒ f ′(x∗) = 0 assiming |g′(x∗)| <∞
e.g. q = 2 : double root f(x∗) = 0, f ′(x∗) = 0

q > 2 =⇒ f ′(x∗) = 0 and f ′′(x∗) = 0

e.g. q = 3 : triple root f(x∗) = 0, f ′(x∗) = 0, f ′′(x∗) = 0

2.2 Four root finding methods [1, 4.2, 4.3]

2.2.1 Bisection

Assume f(x) is continuous and let f(a)f(b) < 0.
Then ∃c ∈ (a, b) s.t. f(c) = 0 (IVT).

d = (a+b)/2 # bisection

if f(d) == 0:

success

else

if f(a)f(d) < 0:

b = d

else

a = d

end

end

repeat until |b-a| < tol # some input tolerance

Figure 2.1: Bisection method.

Note: this method is guaranteed to find a root (also if there
are multiple roots between a and b).

2.2.2 Newton-Raphson method

Have f(x∗) = 0, and assume f(x) is differentiable. Then
0 = f(x∗) ≈ f(x0)+f ′(x0)(x∗−x0) (truncated Taylor series).
Define x1 s.t. f(x0) + f ′(x0)(x1 − x0) = 0. Then in general

f(xk) + f ′(xk)(xk+1 − xk) = 0

or xk+1 = xk −
f(xk)

f ′(xk)
(assume f ′(xk) 6= 0)

Figure 2.2: Newton-Raphson method.

Note: NR is an example of a fixed-point method:

xk+1 = ϕ(xk) with ϕ(x) = x− f(x)

f ′(x)
(NR)

(fixed point: x∗ = ϕ(x∗))

2.2.3 General fixed-point methods

Rewrite f(x) = 0 as x = ϕ(x). Then use iteration:

xk+1 = ϕ(xk).

Example 2.3. f(x) = x− cos(x) = 0.

(A) Try x = cos(x) or x = ϕ(x) with ϕ(x) = cos(x). More
generally, given f(x) = 0, we may consider

ϕ(x) = x+ f(x) =⇒ x+ f(x) = x

or ϕ(x) = x− f(x) =⇒ x− f(x) = x

or ϕ(x) = x+ f(x)2 =⇒ x+ f(x)2 = x

Figure 2.3: Spiral convergence happens when −1 < ϕ′(x∗) < 0
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(B) Try arccos(x) = x. Then xk+1 = ϕ(xk) with ϕ(x) =
arccos(x).

Figure 2.4: Spiral divergence happens when ϕ′(x∗) < −1

Lecture 4

In the general fixed point method, there are 4 cases:

(A) Spiral convergence: −1 < ϕ′(x∗) < 0.

(B) Spiral divergence: ϕ′(x∗) < −1.

(C) Staircase convergence: 0 < ϕ′(x∗) < 1.

Figure 2.5: Staircase convergence.

(D) Staircase divergence: 1 < ϕ′(x∗).

Figure 2.6: Staircase divergence.

Note: convergence also depends on the initial guess.

2.2.4 Secant method

Recall that in NR we have xk+1 = xk − f(xk)
f ′(xk) . Approximate

f ′(xk) by a finite difference:

f ′(xk) ≈ f(xk)− f(xk−1)

xk − xk−1
,

which gives

xk+1 = xk − f(xk)
xk − xk−1

f(xk)− f(xk−1)
,

where f(xk) 6= f(xk−1).

Figure 2.7: Secant method.

Comparison to NR:

1) Secant doesn’t need the derivative.

2) Secant converges more slowly than NR.

3) Both may diverge, depending on initial guess and the func-
tion f(x).

4) Secant needs two initial guesses as opposed to only one.

2.3 Convergence (of fixed point methods) [1, 4.4]

Have xk+1 = ϕ(xk), and assume that ϕ is differentiable.

Theorem 2.4 (Convergence for fixed-point methods). Let
x∗ = ϕ(x∗). Assume ∃δ > 0, ∃m ∈ [0, 1) s.t.

|ϕ′(x)| ≤ m, ∀x ∈ I,

where I = {x : |x − x∗| ≤ δ} (closed interval), (ϕ is a con-
traction mapping). Assume x0 ∈ I, then

1. xk ∈ I, ∀k ∈ {1, 2, 3, . . . }.

2. limk→∞ xk = x∗ (convergence to a solution).

3. x∗ is the only solution in I (of x = ϕ(x)) (uniqueness of
the solution)

Proof. We prove each part separately:
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1. Proof by induction. Assume xk−1 ∈ I. Then

xk − x∗ = ϕ(xk−1)− ϕ(x∗) = ϕ′(ξk)(xk−1 − x∗).

By MVT, ∃ξk ∈ (xk−1, x
∗), and thus ξk ∈ I, and

|ϕ′(ξk)| ≤ m < 1. Therefore

|xk − x∗| ≤ m|xk−1 − x∗| ≤ mδ < δ,

since xk−1 ∈ I. Now since x0 ∈ I, we have that
xk ∈ I, ∀k ∈ {1, 2, 3, . . . }.

2. Note that |xk − x∗| ≤ mk|x0 − x∗|, so we have

lim
k→∞

|xk − x∗| = 0, since m < 1.

3. Assume there is a second root x̂ ∈ I, s.t. x̂ 6= x∗. Then

|x̂− x∗| = |ϕ(x̂)− ϕ(x∗)| = |ϕ′(ξ)||x̂− x∗|

with ξ ∈ (x̂, x∗), so ξ ∈ I, or 1 = |ϕ′(ξ)|, which is a
contradiction. Thus x∗ is the unique solution.

Note that intuitively, a contraction mapping “makes inter-
vals smaller”.

Figure 2.8: |x1 − x∗| = |ϕ(x0)− ϕ(x∗)| < |x0 − x∗|

Note:
ϕ(x) = cos(x) =⇒ |ϕ′(0.74 . . . )| < 1
ϕ(x) = arccos(x) =⇒ |ϕ′(0.74 . . . )| > 1
Note: If there are two solutions in I, then |ϕ′(x)| = 1 for

some x ∈ I.

2.3.1 Convergence speed

Definition 2.5 (Convergence of a sequence with order p).
Let {xk}∞k=0 be a sequence that converges to x∗. Then the
order of convergence, p, is the largest number p ≥ 1 s.t.

lim
k→∞

|xk+1 − x∗|
|xk − x∗|p

= c, with 0 < c <∞.

c is called the asymptotic error constant.

1) If p = 1, and 0 < c < 1, then we have linear convergence.

|xk+1 − x∗| ≈ c|xk − x∗|

2) If p = 2 and 0 < c < ∞, then we have quadratic conver-
gence.

|xk+1 − x∗| ≈ c|xk − x∗|2

Convergence speed of the fixed-point method. Let’s
first assume that we have a converging fixed-point method
and ϕ′(x∗) 6= 0. We know that

xk+1 − x∗ = ϕ(xk)− ϕ(x∗) = ϕ′(ξk)(xk − x∗)

by (MVT) with ξk ∈ (xk, x
∗). Then

|xk+1 − x∗|
|xk − x∗|

= |ϕ′(ξk)| =⇒ lim
k→∞

|xk+1 − x∗|
|xk − x∗|

= c = |ϕ′(x∗)|.

Conclude that c = |ϕ′(x∗)| ∈ (0, 1) =⇒ linear convergence.
Note, if ϕ′(x∗) = 0, then convergence is faster, e.g. NR.

Convergence and convergence speed of NR.
We have that

xk+1 = xk −
f(xk)

f ′(xk)
, and ϕ(x) = x− f(x)

f ′(x)
.

We will need ϕ′(x), and ϕ′′(x):

ϕ′(x) = 1− f ′(x)

f ′(x)
+
f(x)f ′′(x)

(f ′(x))2
=
f(x)f ′′(x)

(f ′(x))2

ϕ′′(x) = f(x)

(
f ′′(x)

f ′(x)2

)′
+
f ′′(x)

f ′(x)

1. Convergence of NR. We know the sufficient condi-
tions for convergence:

∃δ,m : |ϕ′(x)| ≤ m < 1, ∀x ∈ I = {x : |x− x∗| ≤ δ},

so for NR: ∣∣∣∣f(x)f ′′(x)

(f ′(x))2

∣∣∣∣ ≤ m < 1

for x sufficiently close to x∗. Suppose there is a closed interval
J , containing x∗, s.t.

• f(x) is continuous in J ,

• f ′(x) is continuous in J . f ′(x∗) 6= 0,

• f ′′(x) is continuous in J (bounded).

Then there exists an interval I ⊂ J containing x∗, s.t. NR
converges to x∗ for any initial guess in I.

Proof. (Sketch). We can find such an interval I where∣∣∣∣f(x)f ′′(x)

(f ′(x))2

∣∣∣∣ ≤ m < 1

by continuity of f , f ′, f ′′, and using f ′(x∗) 6= 0. Then
use the convergence theorem for fixed-point methods. Note:
f ′(x∗) 6= 0 means that x∗ is a simple root.
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2. Convergence order of NR. How does |xk+1 − x∗|
relate to |xk−x∗|? We know xk+1−x∗ = ϕ(xk)−ϕ(x∗). Use
Taylor series (with remainder theorem):

ϕ(xk) = ϕ(x∗) + ϕ′(x∗)(xk − x∗) + 1
2ϕ
′′(ξk)(xk − x∗)2,

with ξk ∈ (xk, x
∗). Assume a simple root (f ′(x∗) 6= 0), then

ϕ′(x∗) = 0, so

ϕ(xk)− ϕ(x∗) = 1
2ϕ
′′(ξk)(xk − x∗)2

or

lim
k→∞

|xk+1 − x∗|
|xk − x∗|2

= 1
2 |ϕ
′′(x∗)|

Convergence with order p = 2

c = 1
2 |ϕ
′′(x∗)| = 1

2

∣∣∣∣f ′′(x∗)f ′(x∗)

∣∣∣∣
Note: double root =⇒ linear convergence.

Bisection method. Convergence speed is equivalent to lin-
ear, c = 0.5, (p = 1)

Secant method. p = 1+
√

5
2 ≈ 1.618 (simple root).

Lecture 5

2.4 Error estimation and stopping criteria
[1, 4.5]

2.4.1 Conditioning of the root finding problem

In numerical analysis:

Definition 2.6. A problem is well-conditioned if the solution
is not highly sensitive to small perturbations in the problem
formulation. Similarily a problem is ill-conditioned if the re-
sult is highly sensitive to small perturbations.

For the root finding problem, find x∗ s.t. f(x∗) = 0.
Consider perturbed problem: f(x)+δ = 0, where δ is small.

Figure 2.9: Diagram of f(x) + δ.

If |f ′(x∗)| is small (≈ 0), then |x̂∗− x∗| is large for small δ,
so root is ill-conditioned. (e.g. |f ′(x1)| is small, |x̂∗1 − x∗1| is
large: ill-conditioned).

If |f ′(x∗)| is large (� 1), then |x̂∗ − x∗| is small for small
δ, so root is well-conditioned.

Note: the solution to an ill-conditioned problem is hard
(or impossible) to compute accurately on a computer due to
rounding errors etc.

2.4.2 Error estimation and attainable accuracy

Problem: find x∗ s.t. f(x∗) = 0.
single root : (f ′(x∗) 6= 0).
Assume f(x) and f ′(x) are continuous. Consider a root

finding method (iterative) on a computer. Iteration is stopped
at xk = x̄ (in most cases, x̄ = x∗). Let f̃(x̄) be the computa-
tional approximation of f(x̄).

(Note: due to rounding and other approximation errors,
f̃(x̄) 6= f(x̄).)

Assume |f̃(x̄)− f(x̄)| ≤ δ (e.g. unit roundoff).
Question: can we bind |x̄− x∗|?
Yes:

f(x̄) = f(x̄)− f(x∗) = f ′(ξ)(x̄− x∗) (MVT, ξ ∈ (x̄, x∗)).

Hence

|x̄− x∗| =
∣∣∣∣ f(x̄)

f ′(ξ)

∣∣∣∣ .
Assume |f ′(x)| ≥ M > 0 in a neighbourhood of x∗ that in-

cludes x̄. Then |x̄− x∗| ≤ |f(x̄)|
M . Then use

|f̃(x̄)− f(x̄)| ≤ δ =⇒ |f(x̄)| ≤ |f̃(x̄)|+ δ

So

|x̄−x∗| ≤ |f̃(x̄)|+ δ

M
“method-independent error estimate”.

Note: the error bound can be made smaller by reducing f̃(x̄)
(more iterations). If f̃(x̄) = 0, then

|x̄− x∗| ≤ δ

M
“attainable accuracy”.

Note: M ∼ f ′(x∗): link with condition of root. So small
f ′(x∗) ⇐⇒ ill-conditioned root ⇐⇒ large error bound.

double root: f(x∗) = 0, f ′(x∗) = 0 (f ′′(x∗) 6= 0).

f(x̄) = f(x∗)︸ ︷︷ ︸
=0

+ f ′(x∗)︸ ︷︷ ︸
=0

(x̄− x∗) +
f ′′(ξ)

2
(x̄− x∗)2

=⇒ |x̄− x∗|2 = 2
|f(x̄)|
|f ′′(ξ)|

≤ 2|f(x̄)|
M2

with |f ′′(x)| ≥M2 > 0. So we have

|x̄− x∗| ≤

√√√√2

(
|f̃(x̄)|+ δ

M2

)
“method-ind. error estimate”

and

|x̄− x∗| ≤
√

2δ

M2
“attainable accuracy”

Note: double precision, rounding: δ ≈ 10−16,
√
δ ≈ 10−8,

which is much worse for double root than for single root (if
M ∼M2).
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2.4.3 Stopping criteria

Stop if

(1) |xk+1 − xk| ≤ τ1 (a tolerance)

(2) f(xk) ≤ τ2 (a tolerance)

(3) k = kmax

or a combination of these.

Figure 2.10: xk converges to x∗.

Notes: it is difficult to find good values for τ1, τ2, and kmax.

(1) potential problem: may stop too soon

(2) hard to choose τ2

Figure 2.11: f ′ may be too small near the root.

Conclusion: trial-and-error.

2.5 Roots of a polynomial.

Consider p(x) = a1x
3 +a2x

2 +a3x+a4 (degree 3) (in general,
degree n). One possibility: find roots by using NR efficiently

xk+1 = xk −
p(xk)

p′(xk)

How to compute p(x) efficiently:

1) naive approach: compute x2, x3, . . . , xn: (n−1)M , where
M is one multiplication.

Compute p(x): additionally, nM and nA (A is one addi-
tion). Then the total work done is:

W = (2n− 1)M + nA

= 3n− 1 flops (floating point operations)

(assume that, on the computer, additions and multiplica-
tions take about the same time).

2) Horner’s rule: p(x) = ((a1x+ a2)x+ a3)x+ a4.

W = nM + nA = 2n flops

p′(x) can also be computed efficiently using Horner, see [1].

2.5.1 Compute all roots of the polynomial.

1) deflation: find x1 via NR. Then apply NR to p(x)
x−x1

.

Problem:

• Complex roots cannot be found.

• NR may not converge unless the initial guess is chosen
very close to x∗.

2) eigenvalue method : rescale p̃(x) = x3 + c2x
2 + c3x + c4

with ci = ai
a1

(a1 6= 0). Consider the companion matrix of
p̃(x):

C =

−c2 −c3 −c4
1 0 0
0 1 0


Characteristic polynomial of C:

C~x = λ~x =⇒

 −c2x1 − c3x2 − c4x3 = λx1

x1 = λx2

x2 = λx3

So −c2λ2x3 − c3λx3 − c4x3 = λ3x3, which gives

λ3 + c2λ
2 + c3λ+ c4 = 0.

Finding the roots of p̃(x) is the same as finding the eigen-
values of C. We use iterative methods for eigenvalues from
numerical linear algebra to find the eigenvalues (also the
complex eigenvalues).

Lecture 6

2.6 Nonlinear systems [1, 4.8]

ex. f1(x1, x2) = 4x2
1 + 9x2

2 − 36 = 0

f2(x1, x2) = 16x2
1 − 9x2

2 − 36 = 0.
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Figure 2.12: Example of a non-linear system.

2 equations, 2 unknowns, 4 solutions (nonlinear eq.)

Notation 2.7.

x =

[
x1

x2

]
= (x1, x2)T

f(x) =

[
f1(x)
f2(x)

]
=

[
f1(x1, x2)
f2(x1, x2)

]
= (f1(x), f2(x))T

Then f(x) = 0 (also for n = 3, 4, . . . , where n is the number
of unknowns)

2.6.1 Newton-Raphson for systems

x[k] =

[
x

[k]
1

x
[k]
2

]
Truncated Taylor: (x[0] is the initial guess)

0 = f1(x∗) ≈ f1(x[0]) +
∂f1

∂x1
(x[0])(x∗1 − x

[0]
1 )

+
∂f1

∂x2
(x[0])(x∗2 − x

[0]
2 )

0 = f2(x∗) ≈ f2(x[0]) +
∂f2

∂x1
(x[0])(x∗1 − x

[0]
1 )

+
∂f2

∂x2
(x[0])(x∗2 − x

[0]
2 )

Definition 2.8. The Jacobian matrix of f(x) is:

J(x) =

[
∂f1
∂x1

(x) ∂f1
∂x2

(x)
∂f2
∂x1

(x) ∂f2
∂x2

(x)

]
.

In NR, we want to find x[1] = (x
[1]
1 , x

[1]
2 )T , such that

0 =

[
f1(x[0])
f2(x[0])

]
+ J(x[0])

[
x

[1]
1 − x

[0]
1

x
[1]
2 − x

[0]
2

]
or 0 = f(x[0]) + J(x[0])(x[1] − x[0]),

or in general

x[k+1] = x[k] − J(x[k])−1f(x[k]).(
compare to 1D version: xk+1 = xk − f(xk)

f ′(xk)

)
.

In practice:

J(x[k])h[k] = −f(x[k]) (solve linear system)

x[k+1] = x[k] + h[k]

Since inverting a matrix is about 3 times more expensive
than solving a linear system (see later).

Theorem 2.9 (NR Convergence Theorem). If we have that

• f(x) is thrice continuously differentiable in a neighbour-
hood of x∗,

• J(x∗) is nonsingular, and

• x[0] is chosen sufficiently close to x∗,

then NR converges quadratically:

lim
k→∞

‖x[k+1] − x∗‖2
‖x[k] − x∗‖22

= c

Proof. No proof.

2.6.2 Fixed-point method

As before we have f(x∗) = 0 ⇐⇒ x∗ = ϕ(x∗).

Theorem 2.10 (Convergence Theorem for fixed-point). Let
I = {x : ‖x − x∗‖2 ≤ δ}. Let D(x) = [dij(x)] (Jacobian of

ϕ(x)), where dij(x) = ∂ϕi

∂xj
(x). Choose x[0] ∈ I. If

∃0 ≤ m < 1 : ‖D(x)‖2 ≤ m < 1 ∀x ∈ I,

then x[k+1] = ϕ(x[k]) converges linearly:

‖x[k+1] − x∗‖2 ≤ m‖x[k] − x∗‖2
Proof. No proof

3 Numerical methods for ODEs
[1, 10]

3.1 Introduction [1, 10.1]

Definition 3.1. The initial value problem (IVP) for a first-
order scalar ODE is to find y(x) s.t. y′(x) = f(x, y(x)) (ODE)

x ∈ [a, b] (domain)
y(a) = α (initial condition)

Example 3.2. Consider the following IVP: y′(x) = y(x) −→ y(x) = cex

x ∈ [0, 10]
y(0) = 1

y(0) = 1 = c · 1 = c.

Figure 3.1: Given IVP, with a unique solution: y = ex.
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Note: we only consider first-order systems of ODEs, be-
cause high-order ODEs can be converted into first-order sys-
tems.

Example 3.3.

y′′ + 3y′ + 4y = cos(x)

y′2(x) + 3y2(x) + 4y1 = cos(x)

y′1(x)− y2(x) = 0

Introduce new unknown functions:

y1(x) = y(x)

y2(x) = y′(x) (= y′1(x))

→ y′2(x) = y′′(x)

This gives us a linear first-order ODE system:[
y1

y2

]′
=

[
0 1
−4 −1

] [
y1

y2

]
+

[
0

cos(x)

]
,

or rather y′ = Ay + b, where

A =

[
0 1
−4 −1

]
, y =

[
y1(x)
y2(x)

]
, b =

[
0

cos(x)

]
More generally we have a nonlinear first-order ODE system:

y′ = f(x, y(x)),

where y and f are vector functions, x is a scalar.

3.2 Euler’s method [1, 10.2]

Consider an IVP: y′(x) = f(x, y(x)) (scalar)
x ∈ [a, b]
y(a) = α

Divide [a, b] into N equidistant subintervals:

-

a b
x0 x1 x2 . . . xN

x

-�h

where h = b−a
N , and xn = a + nh, for n ∈ {0, 1, . . . , N}, are

the “grid points”.

Notation 3.4.
y(xn) is the exact solution.
yn is the approximate, numerical solution.

3.2.1 Deriving the method

y′(xn) = f(xn, y(xn))

approximate y′(xn) by a finite difference:

f(xn, y(xn)) = y′(xn) ≈ y(xn+1)− y(xn)

h
,

from the definition of the derivative.
Assume yn ≈ y(xn) is known. Then define yn+1 by:

f(xn, yn) =
yn+1 − yn

h
or

yn+1 = yn + hf(xn, yn) (Euler’s method)

3.2.2 Local and global truncation errors

Figure 3.2: Euler’s method.

Note: ŷ(x) is an exact solution of y′ = f(x, y), with initial
condition y(x1) = y1.

Definition 3.5.

Global truncation error : εn+1 := y(xn+1)− yn+1

Local truncation error : `n+1 := ŷ(xn+1)− yn+1

where ŷ(x) is the exact solution of y′ = f(x, y) that goes
through (xn, yn). Note: ŷ(xn) = yn.

Local truncation error for Euler’s method.

`n+1 = ŷ(xn+1)− yn+1

= ŷ(xn + h)− (yn + hf(xn, yn))

= ŷ(xn) + ŷ′(xn)h+ 1
2 ŷ
′′(ξ)h2 − yn − hf(xn, yn)

(where ξ ∈ (xn, xn + h))

= yn + f(xn, ŷ(xn)︸ ︷︷ ︸
yn

)h+ 1
2 ŷ
′′(ξ)h2 − yn − hf(xn, yn)

= 1
2 ŷ
′′(ξ)h2 ∈ O(h2) (second order)

Lecture 7

Recall: IVP  y′(x) = f(x, y(x))
x ∈ [a, b]
y(a) = α

Euler’s method:{
y0 = α
yn+1 = yn + hf(xn, yn)

Note that Euler is an explicit method since there is an explicit
formula to compute yn+1 from the previous value, yn. Also
recall the truncation errors:

global: εn+1 = y(xn+1)︸ ︷︷ ︸
exact

− yn+1︸︷︷︸
approx.

and local: `n+1 = ŷ(xn+1)− yn+1 = 1
2 ŷ
′′(ξ)h2 ∈ O(h2).

12



With ξ ∈ (xn, xn + h) and{
ŷ′(x) = f(x, ŷ(x))
ŷ(xn) = yn

3.2.3 Convergence proof for Euler’s method

Definition 3.6. We say f(x, y) is Lipschitz continuous in y
on [a, b] × (−∞,∞), if ∃L ≥ 0 such that ∀x ∈ [a, b], and
∀y, ŷ ∈ (−∞,∞), we have

|f(x, y)− f(x, ŷ)| ≤ L|y − ŷ|

Figure 3.3: The slope of any secant line is bounded by L.

Note: Differentiable =⇒ Lipschitz cont. =⇒ continuous.

Theorem 3.7 (Global convergence of Euler’s method with
global order O(h)). Consider IVP: y′(x) = f(x, y(x))

x ∈ [a, b]
y(a) = α

Let f(x, y) be continuous on [a, b] × (−∞,∞) and Lipschitz
continuous in y on [a, b]×(−∞,∞) with Lipschitz constant L.
Assume1 ∃M < ∞ : |y′′(x)| ≤ M, ∀x ∈ [a, b]. Then Euler’s
method converges for any fixed xn = c (c fixed, n→∞) with
order O(h).

Proof.

εn+1 = y(xn+1)− yn+1

= y(xn) + hy′(xn) + 1
2h

2y′′(ξn)− (yn + hf(xn, yn))

(where ξn ∈ (xn, xn+1))

εn+1 = εn + h(f(xn, y(xn))− f(xn, yn))︸ ︷︷ ︸
(propagation of) previous error

+ 1
2h

2y′′(ξn)︸ ︷︷ ︸
local truncation
error, new in this
step

|εn+1| ≤ |εn|+ h|f(xn, y(xn))− f(xn, yn)|+ 1
2h

2|y′′(ξn)|
≤ |εn|+ hL|y(xn)− yn|+ 1

2h
2M

|εn+1| ≤ (1 + hL)|εn|+ 1
2h

2M

|εn| ≤ (1 + hL)n |ε0|︸︷︷︸
=0

+ 1
2h

2M

(
n−1∑
k=0

(1 + hL)k

)
1This assumption also guarantees the existence of a unique exact

solution to the IVP

Now use geom. series:
∑p
k=0 r

k = s = rp+1−1
r−1 , where r 6= 1.

Then we have

|εn| ≤ 1
2h

2M

(
(1 + hL)n − 1

hL

)
We then use that ex = 1 + x + 1

2e
ηxx2, where ηx ∈ (0, x).

Hence

ex ≥ 1 + x =⇒ (ex)n ≥ (1 + x)n (x ≥ −1)

=⇒ |εn| ≤ 1
2

hM

L
(ehLn − 1)

Note: xn = x0 + hn. Now fix c in xn = c, and let n→∞ as
h→ 0 (s.t. hn is fixed).

a c b
x0 xn

Then

|εn| = |y(xn)− yn| = |y(c)− yn|

≤ 1
2

hM

L
(eL(c−x0) − 1) ∈ O(h)

Note:
local truncation error: O(hp+1)
global truncation error: O(hp)

due to accumulation of errors (reducing h requires more in-
tervals).

Take into account rounding errors, i.e. consider {ȳn}Nn=0,
instead of {yn}Nn=0. Have

ȳn+1 = ȳn + hf(xn, ȳn) + µρn

where µρn is due to rounding errors in ȳn + hf(xn, ȳn).
Then global error is given by

δn = y(xn)− ȳn.

So we get

|δn+1| ≤ (1 + hL)|δn|+ 1
2h

2M + µR

with |ρn| ≤ R, ∀n. Assume that fl(α) = α, so δ0 = 0. xn = c
(c fixed), then

|y(c)− ȳn| ≤
∣∣∣∣(h2M

2
+ µR

)
/(hL)

∣∣∣∣ [exp(L(c− x0))− 1]
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or |y(c)− ȳn| ≤
∣∣∣∣hM2L +

µR

hL

∣∣∣∣ [exp(L(c− x0))− 1]

Note: µ ∼ 10−16.
For ‘large’ h (h� µ), we have O(h) convergence.
For ‘small’ h (h ≈ µ), rounding error may dominate.
Note: Euler for systems. Consider IVP as before, but with[

y1

y2

]′
=

[
f1(x, y1, y2)
f2(x, y1, y2)

]
where

y =

[
y1

y2

]
, y′ = f(x, y), f =

[
f1

f2

]
.

Then Euler’s method for systems can be written as:

y[n+1] = y[n] + hf(x[n], y[n]).

3.3 Runge-Kutta Methods [1, 10.4]

Try to get a better accuracy than Euler’s O(h).

Figure 3.4: Runge-Kutta. Use slope k = k1+k2
2

to determine yn+1.

Example 3.8 (Heun’s Method).

k1 = f(xn, yn)

k2 = f(xn+1, yn + hk1)

yn+1 = yn + h

(
k1 + k2

2

)
Note that this is a non-linear method.

Truncation errors:

`n+1 = ŷ(xn+1)− yn+1 ∈ O(h3)

εn+1 ∈ O(h2) (1 order better than Euler)

Note: “classical” 4-stage RK method: [1, p. 321] global order
O(h4). 4 stages, 4 evaluations of f(x, y) per step.

Lecture 8

3.3.1 An implicit method [1, 10.5]

Trapezoidal method. Consider y′ = f(x, y(x)) as usual.
Then integrate (assume y(x) is known):∫ xn+1

xn

y′(x) dx =

∫ xn+1

xn

f(x, y(x)) dx

Now use the trapezoid rule for
numerical integration to approxi-
mate the integral:

∫ xn+1

xn

f(x, y(x)) dx ≈ hf(xn, y(xn)) + f(xn+1, y(xn+1))

2

=⇒ y(xn+1)− y(xn) ≈ hf(xn, y(xn)) + f(xn+1, y(xn+1))

2

Now find yn and yn+1 such that

yn+1 − yn = h
f(xn, yn) + f(xn+1, yn+1)

2

Note: implicit: if f is a non-linear function, we need to solve
a non-linear equation to find yn+1.
Truncation errors:

local truncation error O(h3),
global truncation error O(h2) (better than Euler).

Note: how to solve a linear system?

1) NR

2) fixed-point

y
[k+1]
n+1 = ϕ(y

[k]
n+1)

y
[k+1]
n+1 = yn + h

f(xn, yn)

2
+ h

f(xn+1, y
[k]
n+1)

2
. (3.1)

Initial guess:

predictor : 1 step of Euler: y
[0]
n+1 = yn + hf(xn, yn).

corrector : iterate on equation (3.1).
This is called the predictor-corrector method.

Sufficient condition for convergence of corrector:∣∣∣∣dϕ(yn+1)

dyn+1

∣∣∣∣ < 1

=⇒ dϕ

dyn+1
=

∣∣∣∣h2 ∂f∂y
∣∣∣∣ < 1

=⇒ h <
2

|∂f/∂y|

in a neighbourhood of the point (xn+1, yn+1). Note that
the disadvantage of predictor-corrector procedure (fixed-
point) is the limitation on the size of h. h should be not
too small.
Note: many implicit methods are more numerically sta-
ble than explicit methods (larger h can be used without
“blowup”). Many explicit methods become unstable2 nu-
merically when h is too large.

2Exponential growth of the error for n→∞, when h is fixed.
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3.3.2 Numerical Stability [1, 10.6]

Previously we studied convergence of Euler methods. Fix
c = xn = x0 + nh, then let h → 0 as n → ∞ such that hn is
constant. Then we asked “does yn converge to y(xn) = y(c)?”

Now we study numerical stability: fix h, and let n → ∞.
Stability question: “does yn stay close to y(xn) as n → ∞
(fixed h) and xn →∞?”
Note: some convergence methods may be unstable for any h.
First: Consider scalar ODEs. We study the “test equation”:{

y′ = λy (λ < 0) =⇒ y(x) = exp(λx)
y(0) = 1 note limx→∞ y(x) = 0

Numerical stability: we require that limn→∞ yn = 0.
This implies that limn→∞ εn = 0 (global truncation error).

Example 3.9. Apply

yn+1 = yn + hf(xn, yn) (Euler’s method)

to the test equation:

yn+1 = yn + hλyn

= (1 + hλ)yn

= (1 + hλ)ny0

we require limn→∞ yn+1 = 0

=⇒ |1 + hλ| < 1,

or − 1 < 1 + hλ < 1

or − 2 < hλ < 0

So we get the stability condition for Euler method:

h <
−2

λ
.

In general, y′ = f(x, y) is stable iff

h <
2

|∂f/∂y|
(approximately). (3.2)

Reason: use Taylor to get

y′ = f(x, y) ≈ f(x, y0) +
∂f

∂y
(x, y0)(y − y0),

then apply the previous stability analysis to the linearized
equation to get the result (3.2). Note that (3.2) is a guide-
line, because it may not actually be stable depending on the
function. Similarily:

Heun RK: h < 2
|λ|

RK4: h . 2.785
|λ|

 explicit methods

Question: why not consider λ > 0 in test equation?
Suppose λ > 0, then limx→∞ y(x) = ∞, so limn→∞ yn = ∞
is okay, and limn→∞ |y(xn)− yn| =∞ is not a problem.

Observe: the concept of absolute stability3 is not relevant
in this case. It is possible to define a more relevant concept
of relative stability.

3also known as numerical stability

Example 3.10 (Trapezoidal method). Test equation:

y′ = λy (λ < 0)

Trapezoid:

yn+1 = yn + h
f(xn, yn) + f(xn+1, yn+1)

2

apply to test equation

yn+1 = yn +
h

2
(λyn + λyn+1)

yn+1 =

(
1 + h

2λ

1− h
2λ

)
yn

we require ∣∣∣∣∣1 + h
2λ

1− h
2λ

∣∣∣∣∣ < 1 =⇒ conditionally stable

(holds for any h > 0 since λ < 0)

Example 3.11 (Midpoint Rule). Have y′ = f(x, y). Approx-
imate y′(xn):

y′(xn) ≈ y(xn+1)− y(xn−1)

2h
(central finite difference)

Instead of

y′(xn) ≈ y(xn+1)− y(xn)

h
(Euler).

Then we have that

y(xn+1)− y(xn−1)

2h
≈ f(xn, y(xn))

=⇒ yn+1 − yn−1

2h
= f(xn, yn) midpoint rule

=⇒ yn+1 = yn−1 + 2hf(xn, yn) explicit, 2-step

Local truncation error O(h3),
global truncation error O(h2).
This method is convergent on a fixed interval (as h→ 0).

Absolute stability. Apply to test equation:

yn+1 = yn−1 + 2hλyn (difference equation) (3.3)

Assume: yn = crn (ODE: y(x) = c exp(rx)). Plug into (3.3):

crn+1 = crn−1 + 2hλcrn

=⇒ r2 − 2hrλ− 1 = 0 (characteristic polynomial)

Two roots:

r1,2 =
2hλ±

√
4h2λ2 + 4

2
= hλ±

√
h2λ2 + 1

General solution of (3.3):

yn = c1r
n
1 + c2r

n
2 .
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We require  limn→∞ yn = 0 (λ < 0, hλ < 0)
|r1| < 1
|r2| < 1

We have

r1 = hλ+
√
h2λ2 + 1

r2 = hλ−
√
h2λ2 + 1

=⇒ r2 < −1

Since hλ+ 1 <
√
h2λ2 + 1:

a) hλ + 1 > 0 =⇒ h2λ2 + 2hλ + 1 < h2λ2 + 1 which is ok
since 2hλ < 0.

b) hλ+ 1 < 0 clearly ok.

Therefore midpoint rule is unstable for any h.

Midpoint rule is not used since it is not stable.

Lecture 9

3.4 Numerical ODEs

Recall, numerical stability [1, 10.6]. We have the test equation

y′ = λy (λ < 0)

y(t) = c exp(λt)

lim
t→∞

y(t) = 0

Fix h; apply numerical ODE method to test equation.
Require

lim
n→∞

yn = 0

ex: Euler:

yn+1 = yn + hf(xn, yn)

yn+1 = yn + hλyn

h <
2

|λ|
is required for stability

3.4.1 Numerical stability for systems

Consider linear systems: (we can linearize nonlinear ODE
systems) IVP: 

y′ = Ay
x ∈ [a, b]

y(a) =

[
α
β

]
where

y =

[
y1

y2

]
∈ R2

assume A has two linearly independent eigenvectors (A is di-
agonalizable)

Av[1] = λ1v
[1]

Av[2] = λ2v
[2]

A[v[1]|v[2]] = [v[1]|v[2]]

[
λ1 0
0 λ2

]
or AR = RΛ (R = [v[1]|v[2]])

A = RΛR−1 = RΛL

(
Λ =

[
λ1 0
0 λ2

])
or LAR = Λ (A is diagonalizable). We call LAR the similarity
transformation. Note: general solution to y′ = Ay:

y(x) = c1v
[1] exp(λ1x) + c2v

[2] exp(λ2x)

So we have

y′ = RΛLy

(Ly)′ = Λ(Ly)

let z = Ly (change of variables)

=⇒ z′ = Λz

or z′1 = λ1z1

z′2 = λ2z2 (the ODE system has been decoupled)

TFAE:

(a) numerical stability for y′ = Ay.

(b) numerical stability for z′ = Λz (follows from (a) by lin-
earity)

(c) numerical stability for z′i = λizi (i = 1, 2, . . . , n).

Note: For a real A, there may be complex conjugate λi.

Note: This is really our good old test equation with com-
plex λi.

Test eq. z′ = λz where z is complex and Re(λ) < 0. Note:
why Re(λ) < 0: let λ = s+ it, with Re(λ) = s < 0. Then

z(x) = c exp(λx)

= c exp(sx) exp(itx)

= c exp(sx)(cos(tx) + i sin(tx))

lim
x→∞

z(x) = 0 if s = Re(λ) < 0

Example 3.12 (Euler (explicit)).

yn+1 = yn + hf(xn, yn)

ODE: y′ = Ay.
A: eigenvalues λi (i = 1, . . . , n), assume Re(λi) < 0.

consider test equations

z′ = λiz for (i = 1, . . . , n) (3.4)

numerical stability: choose h s.t. Euler is stable
(limn→∞ zn = 0) for z′ = λiz for all i = 1, . . . , n. Note that
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zn+1 = (1 + hλi)
nz0 by applying Euler repeatedly to (3.4).

We require: |1 + hλi| < 1 (because then limn→∞ zn = 0)

If λi is real: h < 2
|λi| or h < −2

λi
or hλi > −2.

Figure 3.5: Region of absolute stability for Euler is a circle with
radius 1 centred at (-1,0). We choose h such that hλi ∈ stability
region.

TFAE:

• |1 + hλ| < 1

• |(1, 0) + (Re(hλ), Im(hλ))| < 1

•
√

(1 + Re(hλ))2 + (Im(hλ))2 < 1 and√
(x− x0)2 + (y − y0)2 = r is the equation for a circle

with radius r centred at (x0, y0).

Example 3.13 (Heun (2-stage RK) (explicit)).

|1 + hλ+
1

2
h2λ2| < 1

Figure 3.6: Stability region for Heun.

Example 3.14 (Trapezoid (implicit)).∣∣∣∣∣1 + hλ
2

1− hλ
2

∣∣∣∣∣ < 1

Figure 3.7: The left half-plane is the region of absolute stability in
the trapezoid method.

Let hλ
2 = −a+ ib where (a > 0), then√

(1− a)2 + b2 <
√

(1 + a)2 + b2

is always true for a > 0. Hence the left sub-plane is the region
of absolute stability. Therefore this method is stable for any
h, i.e. unconditionally stable.

In general implicit methods tend to be more stable than
explicit methods (but not always unconditionally stable).

3.5 Stiff ODE IVPs

“Stiffness” of ODEs is hard to define mathematically, so in-
stead we will give an example:

Consider the IVP:
u′′ + 101u′ + 100u = 0
u(0) = 1.1
u′(0) = −11
x ∈ [0, 1000]

(1) Exact solution:

u(x) = c exp(λx)

0 = cλ2 exp(λx) + c101λ exp(λx) + c100λ exp(λx)

characteristic polynomial: λ2 + 101λ+ 100 = 0, with

λ1,2 =
−101±

√
1012 − 400

2
=

{
−1
−100

general solution:

u(x) = c1 exp(−x) + c2 exp(−100x)

c1 = 1 (since u(0) = 1.1 and u′(0) = −11)

c2 = 0.1

(2) Write as a system to investigate numerical stability

u = y1

u′ = y2 = y′1

17



y′2 = −101y2 − 100y1

y′1 = y2[
y1

y2

]′
=

[
0 1
−100 −101

] [
y1

y2

]
where y1(0) = 1.1 and y2(0) = −11. Eigenvalues of A as
given by the characteristic polynomial:∣∣∣∣ −λ 1

−100 −101− λ

∣∣∣∣ = λ2 + 101λ+ 100 (3.5)

Figure 3.8: The difference between the two functions diminishes
with increasing x.

Note: c2 exp(λ2x) only matters4 for small x.

Note: Assume x is time, then

c2 exp(λ2x) changes on a short (fast) timescale and
c1 exp(λ1x) changes on a long (slow) timescale

Definition 3.15. IVP is called stiff when

1) there are multiple disparate timescales in the problem and

2) the fast timescale is not important on the timescale of the
IVP.

(suppose we are interested in modelling a physical problem,
and we are particularly interested in the slow, long-term
changes)

In case of a stiff problem:

• a small h (timestep) is not required for accuracy (because
changes are slow, large h is sufficient)

• a short timescale in the general solution (λ2 = −100)
forces us to use a very small timestep for Euler, Heun
(inefficient).

Unconditionally stable (implicit) methods are useful for stiff
IVPs (choose h large based on accuracy, h not limited by
stability)

Lecture 10

4Significantly contributes to the solution

3.6 Adaptive step length control [1, 10.7]

Choose h adaptively in order to limit the local truncation
error in every step.

Figure 3.9: Adaptive steps length.

• We need to estimate the local truncation error and

• Take smaller steps when the error is estimated to be too
large.

3.6.1 Estimate the local truncation error

Given

x0, x1, . . . , xn

y0, y1, . . . , yn

with current h. Take the next step: xn+1, yn+1. Estimate the
error in step n+ 1. Consider two methods of different order.

Method A: RK45 (4 stages, local order 5)

local truncation error:

`
(A)
n+1 = y

(A)
n+1 − ŷ(xn+1) = O(h5) = ch5 +O(h6) ≈ ch5

where ŷ(x) is an exact solution of y′ = f(x, y(x)) going
through (xn, yn).

Method B: RK5 (5 stages, local order 6, global order 5)

`
(B)
n+1 = y

(B)
n+1 − ŷ(xn+1) = O(h6)

y
(A)
n+1 − y

(B)
n+1 = ch5 +O(h6) = `

(A)
n+1 ≈ ch5

use y
(A)
n+1 − y

(B)
n+1 to estimate `

(A)
n+1 but we also know how

`
(A)
n+1 depends on h. (approximately)

3.6.2 Take smaller steps when error is estimated too
large

Once we know `
(A)
n+1, how can we adapt h to limit `

(A)
n+1 to a

fixed tolerance.
Given h, used to compute y

(A)
n+1 and y

(B)
n+1. We want to find

a new h s.t.
|`(A)
n+1| < δ

5the 4 indicates the global order
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determine the estimate for the optimal timestep, hopt:

|`(A)
n+1| ≈ δ
|ch5

opt| ≈ δ

hopt ≈
(
δ

c

)1/5

hopt ≈

(
δh5

|y(A)
n+1 − y

(B)
n+1|

)1/5

or hopt = h

(
δ

|y(A)
n+1 − y

(B)
n+1|

)1/5

or hopt = hγ

where γ =

(
δ

|y(A)
n+1 − y

(B)
n+1|

)1/5

3.6.3 Algorithm (similar to ode45)

Consider interval [xn, xn+1].

h = xn+1 − xn

Compute

y
(A)
n+1 (with O(h5) local order)

y
(B)
n+1 (with O(h6) local order)

}
using timestep h

Estimate `
(A)
n+1 ≈ y

(A)
n+1 − y

(B)
n+1.

Compute hopt = h

(
δ

|y(A)
n+1−y

(B)
n+1|

)1/5

= hγ.

Case 1: |y(A)
n+1 − y

(B)
n+1| < δ: accuracy using h is sufficient.

-
xn xn+1 xn+2

x
h hopt

Accept the current computation for yn+1.

Use (xn+1, y
(B)
n+1) as new approximation.

Use hopt as initial step length in step [xn+1, xn+2].

Case 2: |y(A)
n+1 − y

(B)
n+1| ≥ δ : not sufficiently accurate using

h. Recompute step [xn, xn+1] using h← hopt.

Notes:

1. Safety factors are needed.

γ = min

0.8

(
δ

|y(A)
n+1 − y

(B)
n+1|

)1/5

, 5


Where 0.8 is for efficiency6 and 5 for stability.

-
xn xn+1 xn+2

x

h� -
� -

hopt
6Conservative estimate, to avoid redoing a step if the estimate was

just a bit too small

2. Also works for systems: ‖y(A)
n+1 − y

(B)
n+1‖2

3. For efficiency: construct special RK4 and RK5 pairs that
use common function evaluation points (“nested”).

Figure 3.10: RK45 - Fehlberg pair [1, 10.7].

4 LU Decomposition of a square ma-
trix - solving linear systems Ax = b

[1, 8]

4.1 Introduction

Solve Ax = b, where A ∈ Rn×n, and x, b ∈ Rn.
Recall: Gaussian elimination two phases:

1) Reduce A to upper triangular form by row operations.

2) Solve the reduced system by back substitution.

Example 4.1.

A =

1 2 3
4 5 6
7 8 9


→ A′ =

1 2 3
0 −3 −6
0 −6 −20

 (2′) = (2)−m21(1) m21 = 4
1

(3′) = (3)−m31(1) m31 = 7
1

→ A′′ =

1 2 3
0 −3 −6
0 0 −28


(3′′) = (3′)−m32(2′) m32 = −6

−3

Where A′′ is upper triangular. Matrix elements in bold are
called pivot elements.

4.2 LU decomposition

Definition 4.2. Gauss transformation matrix:
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Lk =



1

k
...

�
...

k · · · · · · 1

mk+1,k �
... �

mn,k 1


Example 4.3.

L1 =

1 0 0
4 1 0
7 0 1



Properties of Lk:

(1)

L−1
k =



1

k
...

�
...

k · · · · · · 1

−mk+1,k �
... �

−mn,k 1


Proof.

y = Lkx

yi = xi, for i = 1, . . . , k, and
yi = xi +mikxk, for i = k + 1, . . . , n

=⇒


xi = yi, for i = 1, . . . , k and
xi = yi −mik yk︸︷︷︸

xk

for i = k + 1, . . . , n

(2) Assume k < `:

LkL` =



1

k
...

`
...

�
...

...

k · · · · · · 1
...

mk+1,k �
...

` · · · · · ·
... · · · 1
... m`+1,` �
...

... �
mn,k mn,` 1



ex.

1 0 0
a 1 0
b 0 1

1 0 0
0 1 0
0 c 1

 =

1 0 0
a 1 0
b c 1


Note:

A[b1|b2|b3] = [Ab1|Ab2|Ab3]

back to Example 4.3:

A

→A′ = L−1
1 A

→

1 2 3
0 −3 −6
0 −6 −20

 =

 1 0 0
−4 1 0
−7 0 1

1 2 3
4 5 6
7 8 1


Note:  a1

a2

a3

B =

 a1B
a2B
a3B



L2 =

1 0 0
0 1 0
0 2 1


→ A′′ = L−1

2 A′

This gives

U = A′′ = L−1
2 L−1

1 A

=⇒ L1L2U = A

let L = L1L2, then

LU = A

this is the LU decomposition of A

A = LU

with U : upper triangular,
L: unit lower triangular.

Gaussian elimination is the same as LU decomposition.

Lecture 11

4.2.1 Solving a linear system, Ax = b

1) A = LU

2) L Ux︸︷︷︸
y

= b:

Solve Ly = b for y by forward substitution.
Solve Ux = y for x by backward substitution.
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Matlab code and computational cost.

(a) LU decomposition:

1 function [L,U] = lufac(A)

2 n = size(A,1);

3 L = eye(n);

4 U = A;

5 for k = 1:n-1 % pivot rows

6 for l = k+1:n % rows below pivot

7 m = U(l,k)/U(k,k);

8 U(l,k) = 0;

9 for c = k+1:n

10 U(l,c) = U(l,c) - m*U(k,c);

11 end

12 L(l,k) = m;

13 end

14 end

Note on optimizations:

1. Store U in A (save memory)

2. Store L in A (save memory)

3. vectorize in Matlab, get 1 for loop [1, p. 212]

Computational work: A ∈ Rn×n
Computational complexity:
work: W ∈ O(n3).
Recall:

n−1∑
k=1

1 = n− 1

n−1∑
k=1

k =
1

2
n(n− 1)

n−1∑
k=1

k2 =
1

6
n(n− 1)(2n− 1) (proof in [1, p. 195])

Pivot rows: k=1:n-1 =⇒ n− 1 pivot rows.
for each k: n− k rows below the pivot:

row l: 1 flop7for computing mlk = alk
akk

.

W =

n−1∑
k=1

(2 (n− k)︸ ︷︷ ︸
cols

(n− k)︸ ︷︷ ︸
rows

+(n− k))

=

n−1∑
k=1

(2(n− k)2 + (n− k))

= 2

n−1∑
k=1

(n− k)2 +O(n2)

= 2

n−1∑
r=1

r2 +O(n2)

=
2

6
n(n− 1)(2n− 1) +O(n2)

=
2

3
n3 +O(n2) ∈ O(n3) (for large n)

(b) Ly = b: forward substitution.

1 function y = forward(L,b)

2 n = size(L,1);

3 y = b;

4 for k = 2:n

5 for c = 1:k-1

6 y(k) = y(k) - L(k,c)*y(c);

7 end

8 end

(c) Ux = y: backward substitution.
W = n2 +O(n) flops.

4.3 Pivoting [1, 8.4]

Consider the equation Ax = b.

Example 4.4.[
0 1
1 2

] [
x1

x2

]
=

[
1
0

]
Ax = b[

1 2
0 1

] [
x1

x2

]
=

[
0
1

]
Cx = d

where the circled position has to be non-zero to be used as a
pivot. Say

C = LU =

[
1 0
0 1

] [
1 2
0 1

]
.

Note: A and C are related by a permutation matrix.

P =

[
0 1
1 0

]
, PA = C → PA = LU

PA =

[
p1

p2

]
A =

[
p1A
p2A

]
=

[
[0 1]A
[1 0]A

]
7A floating point operation, which could be one of: multiplication,

addition, division or subtraction.
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Definition 4.5. P is a permutation matrix iff P is all zero,
except for a single 1 in each row and each column. Such P can
be obtained from the identity matrix by interchanging rows
(or columns).

Note: multiplication by P on the left switches rows.
right switches columns.

Proposition 4.6 (A property of a permutation matrix).

det(P ) = ±1.

Proof. Interchanging two rows of a matrix changes the sign
of the determinant (or determinant formula).
Note: permutation matrices are non-singular.

Definition 4.7. P is an elementary permutation matrix iff
P can be obtained from I (the identity) by interchanging 2
rows.
Note: we write Prs to indicate that rows r and s are switched.

Proposition 4.8. The following are properties of elementary
permutation matrices:

1) Prs = PTrs

2) P−1
rs = Prs

Proposition 4.9. Any permutation matrix P can be written
as a product of elementary permutation matrices.

Proof. See [1, p. 204]

Definition 4.10. A ∈ Rn×n is an orthogonal matrix iff

AAT = I = ATA

where I is the identity. Note: AT = A−1.

Proposition 4.11. Any permutation matrix P is orthogonal.

Proof. Assume P = PabPcd, by Proposition 4.9. Then

PTP = PTcd P
T
abPab︸ ︷︷ ︸
I

Pcd = PTcdPcd︸ ︷︷ ︸ I = I.

Similar for more elementary matrices.

Proposition 4.12. A product of two permutation matrices
is a permutation matrix.

Proposition 4.13. The following are properties of the deter-
minant:

1. det(AB) = det(A) det(B), for A,B ∈ Rn×n.

2. Suppose U is upper triangular, that is

U =

u11 X
.. .

0 unn


then

det(U) =

n∏
i=1

uii.

The same it true for lower triangular matrices.
Note: det(Lk) = 1 = det(L−1

k ).

Block matrices.

Example 4.14.

AB = 3

{[ 3︷ ︸︸ ︷
A11 A12 2

A21 A22 1
2 1

]
3

{[ 4︷ ︸︸ ︷
B11 B12 2

B21 B22 1
2 2

]

=

[
A11B11 +A12B21 A11B12 +A12B22

A21B11 +A22B21 A21B12 +A22B22

]
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Theorem 4.15 (LU decomposition). (Theorem 8.6.1 in [1])
Every non-singular A ∈ Rn×n can be factored as PA = LU ,
where P is a permutation matrix, L is unit lower triangular,
and U is non-singular upper triangular.

Proof. We use induction on n.

Base Case n = 1: trivial
(1·α = 1·α, α 6= 0, where P = L = 1, and A = U = α).

Induction Hypothesis Assume the statement is true for n,
let N = n+ 1.

Induction Step Consider A ∈ RN×N . Find a non-zero
pivot element in the first column of A:
∃ai1 6= 0 since A is non-singular, we use ai1 as a pivot.
Then perform one step of Gaussian elimination:

L−1
1 P1A = A1

with L1 =

[
1 0

m I

]
, where m = [m21, . . . ,mN1]T , P1

is a permutation matrix that switches rows 1 and i, and

A1 =

[
u11 uT1
0 Ã2

]
with

u11 = ai1 6= 0

uT1 = [u12, . . . , u1N ]

then

det(A1) = det(L−1
1 ) det(P1) det(A)

= 1 · (−1) · det(A)

= − det(A) 6= 0 since A is non-singular

Hence A1 is non-singular, so

0 6= det(A1) = u11︸︷︷︸
6=0

det(Ã2) =⇒ det(Ã2) 6= 0,

meaning that Ã2 is non-singular.
We have P1A = L1A1. Now use the induction hypothesis
on Ã2 ∈ Rn×n, since Ã2 is non-singular. Then

P̃2Ã2 = L̃2Ũ2.
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Decompose A1: Let

P2 =

[
1 0

0 P̃2

]
, a permutation matrix,

L2 =

[
1 0

0 L̃2

]
, a unit lower triangular matrix, and

U =

[
u11 uT1
0 Ũ2

]
, an upper triangular matrix.

Now putting everything together, we get:

P1A = L1A1

P1A = L1 P
T
2 P2︸ ︷︷ ︸
I

A1

P2P1A = P2L1P
T
2 P2A1

P2P1︸ ︷︷ ︸
P

A = P2L1P
T
2 L2︸ ︷︷ ︸

L

U

=⇒ PA = LU

where
P is a permutation matrix,

L is unit lower triangular, and

U is a non-singular upper triangular matrix.
because

1) P2P1 is a permutation matrix by Proposition 4.12

2) L = P2L1P
T
2 L2 is unit lower triangular:

P2L1P
T
2 =

[
1 0

0 P̃2

][
1 0

m I

][
1 0

0 P̃T2

]

=

[
1 0

P̃2m P̃2

][
1 0

0 P̃T2

]

=

[
1 0

P̃2m P̃2P̃
T
2

]

=

[
1 0

P̃2m I

]
and so

L = P2L1P
T
2 L2

=

[
1 0

P̃2m I

][
1 0

0 L̃2

]

=

[
1 0

P̃2m L̃2

]
,

which is unit lower triangular.

3)

U =

[
u11 uT1
0 Ũ2

]
is upper triangular since Ũ2 is upper triangular, and
it’s non-singular since

0 6= det(U) = u11︸︷︷︸
6=0

det(Ũ2).

Note: we can use LU decomposition to compute det(A):

PA = LU =⇒ det(PA) = det(LU)

=⇒ det(P ) det(A) = det(L) det(U)

=⇒ (±1) · det(A) = 1 ·
n∏
i=1

uii

4.4 Vector and matrix norms [1, 8.10]

We would like to analyse sensitivity of x to perturbations in
A and b, in Ax = b.

Definition 4.16 (Vector norm). Let V be a finite dimensional
vector space over R. A vector norm ‖ · ‖ on V, is a mapping
V 7→ R that satisfies the following conditions for all x, y ∈ V,
and α ∈ R:

‖x‖ ≥ 0

‖x‖ = 0 ⇐⇒ x = 0,

‖αx‖ = |α|‖x‖,
‖x+ y‖ ≤ ‖x‖+ ‖y‖. (triangle inequality)

For V = Rn, we study the following vector norms:

‖x‖1 :=

n∑
i=1

|xi| to be the 1-norm,

‖x‖2 :=

√√√√ n∑
i=1

|xi|2 to be the 2-norm, and

‖x‖∞ := max
1≤i≤n

{|xi|} to be the infinity norm

where x ∈ Rn.

Definition 4.17 (Induced matrix norms8). Let ‖ · ‖ be a
vector norm. Then for A ∈ Rn×n, the induced matrix norm
is given by

‖A‖ := sup
x 6=0

‖Ax‖
‖x‖

Note: we may write

‖A‖ = sup
x 6=0

∥∥∥∥A x

‖x‖

∥∥∥∥ = sup
‖z‖=1

‖Az‖

In particular we shall study the following induced matrix
norms:

‖A‖p := sup
x 6=0

‖Ax‖p
‖x‖p

(for p = 1, 2,∞)

Note: induced matrix norm satisfies all conditions in Defini-
tion 4.16:

1. ‖A‖p ≥ 0,

2. ‖A‖p = 0 ⇐⇒ A = 0,

8Induced by the vector norms

23



3. ‖αA‖p = |α|‖A‖p, and

4. ‖A+B‖p ≤ ‖A‖p + ‖B‖p.

Other properties include:

5. ‖Ax‖p ≤ ‖A‖p‖x‖p since
‖Ay‖p
‖y‖p ≤ supx6=0

‖Ax‖p
‖x‖p , ∀y 6= 0

with equality when y = 0.

6. ‖AB‖p ≤ ‖A‖p‖B‖p.

Definition 4.18. A ∈ Rn×n is symmetric positive definite
(SPD) iff A = AT and xTAx > 0, ∀x 6= 0.

Definition 4.19. A ∈ Rn×n is symmetric positive semi-
definite (SPSD) iff A = AT and xTAx ≥ 0, ∀x 6= 0.

Proposition 4.20 (Properties). Take A ∈ Rn×n, then

1. A = AT =⇒ A has real eigenvalues and a complete set
of n orthogonal eigenvectors.

2. A is SPD =⇒ λi > 0, ∀i ∈ {1, . . . , n}.

3. A is SPSD =⇒ λi ≥ 0, ∀i ∈ {1, . . . , n}.

4. A is SPD =⇒ aii > 0, ∀i ∈ {1, . . . , n}, which means
maxij |aij | = maxk akk (See Lemma 8.7.1, [1, p. 214]).

Lemma 4.21 (Lemma 8.10.5 in [1]).

‖A‖∞ = max
1≤i≤n

 n∑
j=1

|aij |

 “maximum absolute row sum”

Proof. Recall:

‖A‖∞ = sup
‖x‖∞=1

‖Ax‖∞.

‖x‖∞ = 1 ⇐⇒ max
1≤i≤n

|xi| = 1.

Let

r = max
1≤i≤n

 n∑
j=1

|aij |

 (largest absolute row sum).

Let ‖x‖∞ = 1, then ‖Ax‖∞ ≤ r since

|(Ax)i| =

∣∣∣∣∣∣
n∑
j=1

aijxj

∣∣∣∣∣∣ ≤
n∑
j=1

|aij ||xj | ≤
n∑
j=1

|aij | ≤ r.

Now it’s sufficient to find x̂ s.t. ‖Ax̂‖∞ = r and ‖x̂‖∞ = 1.
Let ν be the index of the row in A with the maximum absolute
row sum, meaning that

n∑
j=1

|aνj | = r.

Define x̂ as follows:

x̂j := sgn(aνj) =

 1 if aνj > 0
0 if aνj = 0
−1 if aνj < 0

Note that

|(Ax̂)ν | =

∣∣∣∣∣∣
n∑
j=1

aνj x̂j

∣∣∣∣∣∣ =

n∑
j=1

|aνj | = r.

Therefore ‖Ax̂‖∞ = r and so ‖A‖∞ = r.

Lemma 4.22.

‖A‖1 = max
1≤j≤n

(
n∑
i=1

|aij |

)
“max absolute column sum”

Proof. Assignment 4
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Proposition 4.23. If A ∈ Rn×n, then ATA is SPSD.

Proof. Let λi(A
TA) denote the ith eigenvalue of ATA.

(ATA)T = ATA =⇒ λi(A
TA) are real

and

xTATAx = (Ax)T (Ax) = ‖Ax‖22 ≥ 0 for any x,

so λi(A
TA) ≥ 0, ∀i.

Definition 4.24. Let A ∈ Rn×n, where λi(A) can be com-
plex. Then

ρ(A) := max
1≤i≤n

|λi(A)|

is called the spectral radius of A.

Figure 4.1: Spectral radius.

2-norm.

‖A‖2 = max
1≤i≤n

√
λi(ATA)

= max
1≤i≤n

√
λi(AAT )

= max
1≤i≤n

σi where σi are the singular values of A
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Special case: if A is symmetric (i.e. A = AT , so real eigen-
values), then

‖A‖2 = max
1≤i≤n

√
λi(A2)

= max
1≤i≤n

√
(λi(A))2

= max
1≤i≤n

|λi(A)| = ρ(A)

Example 4.25.

‖A‖2 = max
‖x‖2=1

‖Ax‖2

A =

[
3 1
1 3

]
, λ1,2 = 2, 4︸ ︷︷ ︸

eigenvalues

x1 =

[
1
−1

]
, x2 =

[
1
1

]
︸ ︷︷ ︸

eigenvectors

Figure 4.2: A stretches and rotates. ‖A‖2 = 4.

4.5 Sensitivity and conditioning of the
problem Ax = b [1, 8.11]

Definition 4.26. Ax = b is a well-conditioned problem iff
small perturbations9 in A or b always give small perturbations
in x. Otherwise we say Ax = b is an ill-conditioned problem,
which means small perturbations in A or b may give large
perturbations in x.

So we have two cases:

1) Perturbation in b only: A(x+ δx) = b+ δb, where x is the
exact solution of the unperturbed problem Ax = b. What
is the relative error ‖δx‖/‖x‖ compared to ‖δb‖/‖b‖? We
have:

Aδx = δb

=⇒ δx = A−1δb

=⇒ ‖δx‖ ≤ ‖A−1‖‖δb‖

Use ‖b‖ = ‖Ax‖ ≤ ‖A‖‖x‖ or ‖x‖−1 ≤ ‖A‖‖b‖−1 to get

‖δx‖
‖x‖

≤ ‖A−1‖‖δb‖‖A‖
‖b‖

or
‖δx‖
‖x‖

≤ ‖A‖‖A−1‖‖δb‖
‖b‖

9For example rounding errors.

Definition 4.27. The condition number of A is given by

κ(A) = ‖A‖‖A−1‖

Note that κ(A) = ‖A‖‖A−1‖ ≥ 1, because:

1 = ‖I‖ = ‖AA−1‖ ≤ ‖A‖‖A−1‖ = κ(A).

If κ(A)� 1 then problem Ax = b is ill-conditioned.
If κ(A) ≈ 1 then problem Ax = b is well-conditioned.
Note:

κ2(A) = ‖A‖2‖A−1‖2 =
σmax(A)

σmin(A)
=
|λ|max
|λ|min

where the last equality holds if A = AT since

Ax = λx =⇒ 1

λ
x = A−1x if λ 6= 0.

Note that conditioning is a property of the problem Ax =
b, and is independent of the algorithm.

2) Perturbations in both A and b:

Lemma 4.28 (Lemma 8.10.6 in [1]). If there is a p such
that ‖F‖p < 1, then I + F is non-singular.

Proof. Assume I + F is singular. Then (I + F )x = 0 for
some x 6= 0. So

‖x‖p = ‖ − Fx‖p ≤ ‖F‖p‖x‖p
=⇒ ‖x‖p < ‖x‖p =⇒ a contradiction!

Theorem 4.29 (Theorem 8.11.2 in [1]). Let Ax = b,
A ∈ Rn×n non-singular. Consider

(A+ δA)(x+ δx) = b+ δb.

Suppose τ = κ(A)‖δA‖‖A‖ < 1 (Note: τ = ‖A−1‖‖δA‖). then

A+ δA is non-singular and

‖δx‖
‖x‖

≤ κ(A)

1− τ

(
‖δb‖
‖b‖

+
‖δA‖
‖A‖

)

Proof. First, we show that A+ δA is non-singular.
Rewrite A+ δA = A(I + F ) with F = A−1δA. Then

‖F‖ = ‖A−1δA‖ ≤ ‖A−1‖‖δA‖ = τ < 1.

Which implies that I + F is non-singular by Lemma 4.28.
Therefore A+ δA is non-singular since

det(A+ δA) = det(A)︸ ︷︷ ︸
6=0

det(I + F )︸ ︷︷ ︸
6=0
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Now we derive the bound:

(A+ δA)(x+ δx) = b+ δb

Aδx = δb− δA(x+ δx)

δx = A−1δb−A−1δA(x+ δx)

‖δx‖ ≤ ‖A−1‖‖δb‖+ ‖A−1‖‖δA‖‖x+ δx‖
‖δx‖ ≤ ‖A−1‖‖δb‖+ τ(‖x‖+ ‖δx‖)

(1− τ)‖δx‖ ≤ ‖A−1‖‖δb‖+ τ‖x‖
‖δx‖
‖x‖

≤ 1

1− τ

(
‖A−1‖‖δb‖

‖x‖
+ τ

)
‖δx‖
‖x‖

≤ 1

1− τ

(
‖A−1‖‖A‖‖δb‖

‖b‖
+ ‖A‖‖A−1‖‖δA‖

‖A‖

)
‖δx‖
‖x‖

≤ κ(A)

1− τ

(
‖δb‖
‖b‖

+
‖δA‖
‖A‖

)

Note: these are the upper bounds (“worst case”). There
exist certain matrices with very large condition numbers
(κ(A)) for which there are algorithms that can compute
the solution very accurately10. However, most matrix
problems where κ(A) is very large cannot be solved ac-
curately with any algorithm.

Lecture 14

4.6 Stability of Gaussian Elimination and
LU Decomposition for Ax = b [1, 8.4,
8.12]

Example 4.30. Consider the problem Ax = b, with

A =

[
ε 1
1 1

]
, b =

[
1
2

]
, 0 < ε� 1.

A−1 =
1

ε− 1

[
1 −1
−1 ε

]
x = A−1b =

1

ε− 1

[
−1

−1 + 2ε

]
=

[ 1
ε−1
1−2ε
1−ε

]
≈
[
1
1

]

κ∞(A) = ‖A‖∞‖A−1‖∞ = 2· 2

1− ε
≈ 4 =⇒ well-conditioned

4.6.1 Gaussian Elimination

Consider the following:[
ε 1
1 1

]
→
[
ε 1
0 1− 1

ε

]
m21 =

1

ε
.

Then

A = LU, L =

[
1 0
1
ε 1

]
, U =

[
ε 1
0 1− 1

ε

]
L−1 =

[
1 0
− 1
ε 1

]
10For example sparse discretizations of Poisson differential equations

Example 4.31. Take ε = 10−5, and m21 = 105. Consider
the floating point system:

(β = 10, t = 3, L = −10, U = 10)

Then we have [
10−5 1 1

0 1− 105 2− 105

]

fl(1− 105) = fl(−99999) fl(2− 105) = fl(−99998)

= −1× 105 = −1× 105

Let x =

[
x1

x2

]
, then

[
10−5 1 1

0 −105 −105

]
→ x =

[
0
1

]
← the first component

should be close to 1

This problem is well-conditioned, but the algorithm finds a
highly inaccurate result, so the algorithm is unstable.

Why is it unstable? Due to a poor choice of pivot element,
some steps become ill-conditioned problems, which cause the
algorithm to be unstable. Note:

‖L‖∞ ≈
1

ε
= 105, ‖L−1‖∞ ≈

1

ε
= 105

κ(L) ≈ 1010 (ill-conditioned)

Similarly κ(U) ≈ 1010 =⇒ ill-conditioned steps in the algo-
rithm.

Stability is a problem for the algorithm, not the problem
itself.
Conditioning, on the other hand, refers to the problem. Note
that the choice of pivot element creates very large numbers in
the transformed A (i.e. U).

4.6.2 Gaussian Elimination with Partial Pivoting

We modify the original Gaussian Elimination algorithm. In
every step we will switch rows so that the largest element (in
absolute value) in the column is chosen as the pivot.

Example 4.32.[
1 1
ε 1

]
→
[

1 1 2
0 1− ε 1− 2ε

]
,

fl(1− ε) = 1
fl(1− 2ε) = 1

We have x2 = 2, and x1 = 1.

L =

[
1 0
ε 1

]
, U =

[
1 1
0 1− ε

]
κ∞(L) ≈ 1, κ∞(U) ≈ 4, (better conditioning)

Gaussian Elimination with partial pivoting is a stable algo-
rithm.
For full pivoting, select largest pivot element from remaining
rows and columns (more work, but not much more stable).
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Theorem 4.33 (Theorem 8.12.1 in [1]). Consider the prob-
lem Ax = b. Let x̂ be the solution given by Gaussian Elim-
ination with partial pivoting. Let τ = µ(n3 + 3n2)gnκ(A),
where

gn =
maxi,j,k |â(k)

ij |
maxi,j |aij |

“growth factor”

where â
(k)
ij are the elements of the transformed A at kth step of

Gaussian Elimination, and aij are the elements of the original
A. Then

‖x̂− x‖∞
‖x‖∞

≤ τ

1− τ
Proof. No proof.

Notes:

• τ � 1 is good (“stable” result)

• τ can be large if any one of the following holds:

– κ(A) is large

– n is large

– gn is large

• There are more stable algorithms for Ax = b than LU de-
composition. For example QR decomposition (no growth
in matrix elements).

5 QR decomposition

5.1 QR decomposition of a square matrix
A ∈ Rn×n

Definition 5.1. Q ∈ Rn×n is orthogonal iff QTQ = I =
QQT .

Proposition 5.2. Orthogonal matrices preserve Euclidean
length (2-norm).

Proof. Let QTQ = O. Suppose y = Qx. Then

‖y‖2 = ‖Qx‖2

=
√

(Qx)TQx

=
√
xTQTQx

=
√
xTx

= ‖x‖2

(From now on we shall use only 2-norms).

Proposition 5.3. Product of orthogonal matrices is orthog-
onal.

Proof. Let Q = Q1Q2, where Q1, Q2 are orthogonal. Then

QTQ = (Q1Q2)TQ1Q2 = QT2 Q
T
1 Q1Q2 = I

Note QTQ = I is sufficient because

det(QT ) det(Q) = det(I) = 1

det(Q) = ±1 thus QT = Q−1

and so QQT = QQ−1 = I.

Consider solving Ax = b. If we use LU decomposition (with
partial pivoting) then matrix elements may grow:

A =

[]
→
[
X X
0 X

]
= L1A

One idea is to use an orthogonal transformation matrix to
create the zeros:

A =

[]
→ A2 = Q1A =

[
X X
0 X

]
where Q1 is an orthogonal matrix. An advantage is that the
2-norms of the columns of A2 are the same as for A (no uncon-
trolled growth in matrix elements). This is somewhat more
stable than LU, however it requires more work than LU. Main
advantage is in least-squares problems.

Theorem 5.4 (QR factorization of A ∈ Rn×n). Let A ∈
Rn×n, then ∃Q ∈ Rn×n, orthogonal and R ∈ Rn×n upper
triangular such that A = QR.
Note: to solve Ax = b, we solve QRx = b =⇒ Rx = QT b by
back substitution.

How to build Q and R:

1. Gram-Shmidt orthogonalization of the columns of A.

Example 5.5.

A =
[
~a1 ~a2 ~a3

]
~t1 = ~a1 → ~q1 =

~t1

‖~t1‖

~t2 = ~a2 −
(~a2,~t1)

(~t1,~t1)
~t1 → ~q2 =

~t2

‖~t2‖

~t3 = ~a3 −
(~a3,~t1)

(~t1,~t1)
~t1 −

(~a3,~t2)

(~t2,~t2)
~t2 → ~q3 =

~t3

‖~t3‖

So we get

~a1 = r11~q1

~a2 = r12~q1 + r22~q2

~a3 = r13~q1 + r23~q2 + r33~a3[
~a1 ~a2 ~a3

]︸ ︷︷ ︸
A

=
[
~q1 ~q2 ~q3

]︸ ︷︷ ︸
Q

r11 r12 r13

0 r22 r23

0 0 r33


︸ ︷︷ ︸

R

A = QR, (QTQ = I)

For large n, Gram-Schmidt itself is numerically unstable
(due to rounding, cancellation→ lose orthogonality). We
need a better algorithm for QR: Householder reflections.

Lecture 15
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2. Householder reflections:

A = [~a1| . . . |~an] =⇒ Q1A =

[
±‖~a1‖ rT1

0 Ã2

]

Figure 5.1: Householder reflection.

Let ~u = ~v
‖~v‖ , it’s called the Householder vector for this

reflection. ~u is a unit vector. For any vector ~z ∈ Rn:

Q1~z = ~z − 2(~uT~z)~u

or Q1 = I − 2~u~uT

Note: QT1 = Q1. Also Q1 is orthogonal.

QT1 Q1 = (I − 2~u~uT )(I − 2~u~uT )

= (I − 4~u~uT + 4~u~uT~u~uT )

= I

The algorithm:

Step 1: A2 = Q1A =

[
r11 rT1
0 Ã2

]
.

Step 2: Ã3 = Q̃2Ã2 =

[
r22 rT2

0 ˜̃A3

]
,

or Q2 =

[
1 0

0Q̃2

]
.

A3 = Q2A2 =

[
1 0

0 Q̃2

][
r1 rT1
0 Ã2

]

=

[
r11 rT1
0 Q̃2Ã2

]

or A3 =

 r11 rT1

0
r22 rT2

0 ˜̃A3

 = Q2Q1A

do n steps like this

R = QTA with QT = QnQn−1 . . . Q2Q1

or QR = A with Q = QT1 Q
T
2 . . . Q

T
n−1Q

T
n

=⇒ Q = Q1Q2 . . . Qn−1Qn

Note: for numerical stability, choose ±‖~a1‖ s.t. its sign
is opposite to the sign of (~a1)1 to avoid catastrophic can-
cellation in

~v = ~a1 −Q1~a1

Note: W = 4
3n

3 + O(n2) (double of LU). QR is more
work than LU but is somewhat more stable (no growth
in matrix elements).
Note: How to compute Q in practice two possibilities:

1) Multiply Qi’s iteratively:

QT = QnQn−1 . . . Q2Q1I

Problem: Q̃i has to be applied to all columns. (ex-
pensive)

2) Store ~u vectors.

Q = Q1Q2 . . . Qn−1QnI

advantage: there are still leading columns with zeros
in each step. (less work)

3) (detail) Store the ~u vectors.

5.2 QR decomposition of a rectangular ma-
trix A ∈ Rm×n

Assume m ≥ n. Then A = Q

[
R
0

]

m
[ n ]

= m [ Q̂ Q̄
n m− n

]
[ n

R n
0 m− n

]
Q̂: orthogonalization of the n columns of A (in the general

case).
Q̄: more orthogonal columns, to complete the orthogonal

basis of Rm. Note: Householder algorithm also works for this
case (n steps) Note “thin form” QR decomposition of A:

A = Q̂R Q̂ = m
[ n ]

, R = n
[ n

X
0

]
Amount of work for “thin form” QR using House-
holder, A ∈ Rm×n. Only count work to form R: n orthog-
onal transformations of form (k = 1, . . . , n).

Q̃iÃi = (I − 2~ui~u
T
i )Ãi

is the operation which dominates the cost of computation.
Note that ~ui~u

T
i ∈ Rm−k+1 and Ãi ∈ R(m−k+1)×(n−k+1).

first compute ~uTi Ãi: Ãi has n− k + 1 columns:

(n− k + 1)(m− k + 1) multiplications

(n− k + 1)(m− k) additions
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Then compute ~ui(~u
T
i Ãi) → (m − k + 1)(n − k + 1) multipli-

cations.
Then Ãi − 2~ui(~u

T
i Ãi): (m− k + 1)(n− k + 1) additions11.

W = 2mn2 − 2

3
n3 + lower order terms

Lecture 16

5.3 Least-squares solution using QR [1, 8.14,
8.15]

Consider Ax = b, A ∈ Rm×n, where m ≥ n. This is called an
overdetermined system. For example:a11 a12

a21 a22

a31 a32

[x1

x2

]
=

b1b2
b3

 3 euqations
2 unknowns

=⇒ usually no exact solution (overdetermined).

Definition 5.6 (Least squares problem (LS)). Find x̂ ∈ Rn
such that ‖b−Ax̂‖2 is minimal.

5.3.1 Geometric interpretation

Definition 5.7. The residual is r := b−Ax (for some x)

Definition 5.8. Define the column space of A by

C(A) := {A~x : for x ∈ Rn}

These are all linear combinations of the columns of A.

Least-Squares (LS): find Ax̂ in the column space of A
s.t. the residual r has minimal 2-norm. This is achieved by
r ⊥ C(A). (residual orthogonal to the column space). Or Ax̂
is the orthogonal projection of b onto C(A). How to find x̂?

r ⊥ Ax ∀x ⇐⇒ (r,Ax) = 0 ∀x
⇐⇒ (b−Ax̂,Ax) = 0 ∀x
⇐⇒ (b−Ax̂)TAx = 0 ∀x
⇐⇒ (b−Ax̂)TA = 0

⇐⇒ AT (b−Ax̂) = 0

⇐⇒ ATAx̂ = AT b (�)

where ATA ∈ Rn×n. Note that equation (�) gives the normal
equations, the first way to compute the LS solution. One
problem in this approach is that ATA can be ill-conditioned,
even more so than A.

Theorem 5.9. Let A ∈ Rm×n, m ≥ n.

1) x is a global minimizer of ‖Ax− b‖2 ⇐⇒ x satisfies the
normal equations ATAx = AT b.

11Note that we don’t count multiplication by 2 because we can just
increase the exponent in the floating point representation by 1

2) If the columns of A are linearly independent, then there
exists a unique minimizer.

Proof. 1) x is a global minimum

⇐⇒ ‖A(x+ y)− b‖22 ≥ ‖Ax− b‖22 ∀y
⇐⇒ (Ax− b, Ax− b) + 2(Ax− b, Ay) + (Ay,Ay)

≥ (Ax− b, Ax− b) ∀y
⇐⇒ 2(ATAx−AT b, y) + (Ay,Ay) ≥ 0 ∀y (♠)

⇐⇒ ATAx = AT b

We prove the last implication (“ =⇒ ”) rigorously: As-
sume g = ATAx − AT b 6= 0. Choose y = −εg, ε > 0.
Then we need (♠) to hold ∀ε > 0. Observe that (♠) be-
comes:

−ε(g, g) + ε2(Ag,Ag) ≥ 0 ∀ε

Suppose Ag 6= 0, then

ε ≥ 2(g, g)

(Ag,Ag)
∀ε

which is a contradiction since (♠) must hold for all ε > 0.
Furthermore, if Ag = 0, then (♠) becomes −ε(g, g) ≥ 0,
which is also a contradiction, since ε > 0 and (g, g) ≥ 0.

2) Columns of A are linearly independent.
=⇒ Ax 6= 0 if x 6= 0
=⇒ ‖Ax‖22 = (Ax)TAx = xTATAx > 0 if x 6= 0.
=⇒ ATA is SPD.
=⇒ ATA is non-singular.
=⇒ ATAx = AT b has a unique solution.

LS using QR. Ax = b, A ∈ Rm×n, m ≥ n. b ∈ Rm,

x ∈ Rn. Minimize ‖r‖2 = ‖b − Ax‖2. Let A = Q

[
R
0

]
, with

Q =
[
Q̂|Q̄

]
∈ Rm×m and Q̂ ∈ Rm×n. Then

‖r‖22 = ‖QT r‖22

=

∥∥∥∥QT (b−Q [R0
]
x

)∥∥∥∥2

2

=

∥∥∥∥[Q̂T bQ̄T b

]
−
[
Rx
0

]∥∥∥∥2

2

= ‖Q̂T b−Rx‖22 + ‖Q̄T b‖22︸ ︷︷ ︸
indep. of x

.

Thus ‖r‖22 is minimal when Q̂T b−Rx = 0 or Rx = Q̂T b. We
solve the system by backward substitution to find x̂. Deter-
mine Q̂ and R using Householder algorithm. This is numeri-
cally more stable than solving normal equations.

6 Basic iterative methods for Ax = b
[2], [3]

Context problem: Ax = b with A ∈ Rn×n. So far we have two
direct methods: LU and QR, each having W ∈ O(n3) → n
steps, O(n2) work per step.
Alternatively we may use iterative methods. These have� n
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iterations with � n2 work per iteration. These give us ap-
proximate solutions, and we stop after a small number of it-
erations, as soon as desired accuracy is reached. Iterative
methods are useful for large, sparse matrices12.

Lecture 17

6.1 Diagonal dominance

Definition 6.1. A ∈ Rn×n is (strictly) row diagonally dom-
inant iff

|aii| >
∑
j 6=i

|aij | ∀i

Theorem 6.2 (Gershgorin circles). Let A ∈ Rn×n. Let Σ(A)
be the spectrum of A. Let Di be the closed discs in the complex
plane with centres at aii and radii ri =

∑
j 6=i |aij | for i =

1, . . . , n. Then

Σ(A) ⊂
n⋃
i=1

Di

Proof. Let λi, x be an eigenvalue-eigenvector pair of A:

Ax = λx (x 6= 0).

Let i be an index where |xi| is maximal: |xi| = ‖x‖∞.
So we know xi 6= 0 since it is the maximal (in absolute
value) element of an eigenvector (so x 6= 0). We know that∑n
j=1 aijxj = λxi, so it also follows that∑

j 6=i

aijxj = (λ− aii)xi

and thus we have

|λ− aii| ≤

∣∣∣∣∣∣
∑
j 6=i

aij
xj
xi

∣∣∣∣∣∣ ≤
∑
j 6=i

|aij |
∣∣∣∣xjxi
∣∣∣∣ ≤∑

j 6=i

|aij |,

which yields λ ∈ Di. Applying the same reasoning to all
eigenvalue-eigenvector pairs gives

Σ(A) ⊂
n⋃
i=1

Di.

Theorem 6.3. If A ∈ Rn×n is strictly diagonally dominant,
then A is non-singular.

Proof. We know |aii| >
∑
j 6=i |aij | for all i. Therefore, non of

the Gershgorin discs contain the origin. Thus 0 6∈ Σ(A), so A
is non-singular.

12For example in the discretization of partial differential equations.

6.2 Jacobi and Gauss-Seidel iterative meth-
ods

6.2.1 Jacobi iterative method

Given a problem Ax = b with x, b ∈ R3, we compute

a11x
new
1 + a12x

old
2 + a13x

old
3 = b1

a21x
old
1 + a22x

new
2 + a23x

old
3 = b2

a31x
old
1 + a32x

old
2 + a33x

new
3 = b3

In general we have

xnewi =
1

aii
(bi −

∑
j 6=i

aijx
old
j )

Notes:

1. aii 6= 0 is required for all i

2. all xnewi can be computed independently from each other
(good for parallel computing)

3. convergence is not obvious, it depends on properties of
the matrix

6.2.2 Gauss-Seidel iterative method

Given a problem Ax = b with x, b ∈ R3, we compute

a11x
new
1 + a12x

old
2 + a13x

old
3 = b1

a21x
new
1 + a22x

new
2 + a23x

old
3 = b2

a31x
new
1 + a32x

new
2 + a33x

new
3 = b3

In general we have

xnewi =
1

aii

bi − i−1∑
j=1

aijx
new
j −

n∑
j=i+1

aijx
old
j


Notes:

1. If it converges, GS will often converge faster than Jacobi

2. Sequential (not good for parallel computing)

3. Other orders are possible too

6.2.3 In matrix form

Let A = D − L− U :

Jacobi: x(k+1) = D−1(b + (L + U)x(k)) (k is the iteration
number). So we get

Ax = b

(D − L− U)x = b

Dx = b+ (L+ U)x

=⇒ Dx(k+1) = b+ (L+ U)x(k)
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Gauss-Seidel: x(k+1) = (D − L)−1(b+ Ux(k)). So we get

Ax = b

(D − L− U)x = b

(D − L)x = b+ Ux

=⇒ x(k+1) = (D − L)−1(b+ Ux(k))

6.2.4 Convergence theorems

For Ax = b, with det(A) 6= 0.

Theorem 6.4. If A is SPD, then GS converges to the unique
solution of Ax = b, for any initial guess x(0).

Theorem 6.5. If A is strictly diagonally dominant, then GS
and Jacobi converge to the unique solution of Ax = b, for any
initial guess x(0).

6.3 General form of stationary linear iter-
ative methods for Ax = b, and the error
equation

6.3.1 The error equation

Consider Au = f (det(A) 6= 0) where u is the exact solution,
and v is some approximate solution. Define the error e :=
u − v = exact − approximate, and residual r := f − Av as
before. Derive the error equation:

Ae = A(u− v)

= Au−Av
= f −Av
= r

6.3.2 General form of stationary linear iterative
methods

We have u = v + (u− v), so u = v + e.
Note: knowing v, the residual, r, is easy to compute (one
matrix-vector product). Use the error equation:

u = v +A−1r

where computing the inverse of A is the most expensive opera-
tion. An idea is to replace A−1 with a “cheap” approximation:
B ≈ A−1. So we get

v(i+1) = v(i) +Br(i) with r(i) = f −Av(i),

the stationary iterative method. Error:

u− v(i+1) = u−
(
v(i) +Br(i)

)
u− v(i+1) = u− v(i) −B(f −Av(i))

u− v(i+1) = u− v(i) −B(Au−Av(i))

e(i+1) = (I −BA)e(i),

or e(i+1) = Re(i) with R = I − BA error iteration matrix.
Note: if B = A−1 then R = 0, so e(1) = 0 in one step.

Jacobi: Specific example of a stationary iterative method:

v(i+1) = D−1(f + (L+ U)v(i))

Using A = D − L− U , we get

L+ U = D −A
D−1(L+ U) = I −D−1A.

So v(i+1) = D−1f + (I −D−1A)v(i) = v(i) +D−1(f − v(i)), or

v(i+1) = v(i) +D−1r(i)

So for the Jacobi method, we have

BJ = D−1 ≈ A−1, and RJ = I −D−1A.

Gauss-Seidel: Specific example of a stationary iterative
method:

v(i+1) = (D − L)−1(f + Uv(i))

Using A = D − L− U , we get

v(i+1) = (D − L)−1f + (D − L)−1(D − L−A)v(i)

= (D − L)−1f + (I − (D − L)−1A)v(i)

= v(i) + (D − L)−1(f −Av(i))

= v(i) + (D − L)−1r(i)

So for the Gauss-Seidel method, we have

BGS = (D − L)−1 ≈ A−1, and RGS = I − (D − L)−1A.

Theorem 6.6 (Convergence theorem). Consider stationary
iterative method:

v(i+1) = v(i) +B(f −Av(i)) (6.1)

for linear system Au = f , with det(A) 6= 0. If there exists a p-
norm such that ‖I−BA‖p < 1, then iteration (6.1) converges
to the unique solution of Au = f for any initial guess v(0).

Proof. (6.1) holds iff u − v(i+1) = u − v(i) − B(f − Av(i)) iff
e(i+1) = (I −BA)e(i). Then

‖e(i+1)‖p ≤ ‖I −BA‖p‖e(i)‖p
=⇒ ‖e(i+1)‖p ≤ ‖I −BA‖i+1

p ‖e(0)‖p
=⇒ lim

i→∞
‖e(i)‖p = 0 (∵ ‖I −BA‖p < 1)

=⇒ lim
i→∞

e(i) = 0

Lecture 18

Theorem 6.7. Let A be strictly row diagonally dominant.
Then Jacobi converges to the exact solution of Au = f for
any initial guess.
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Proof. We know that A = D − L− U , and BJ = D−1. Note
that A−1 exists. Then

‖RJ‖p = ‖I −D−1A‖p
= ‖I −D−1(D − L− U)‖p
= ‖D−1(L+ U)‖p.

We know |aii| >
∑
j 6=i |aij | ∀i (row sums). Consider p = ∞.

Then the maximal absolute row sum = ‖A‖p. So

‖D−1(L+ U)‖∞ = max
1≤i≤n

∑
j 6=i |aij |
|aii|

< 1

by the previous convergence theorem, Jacobi converges.

6.4 Spectral radius convergence theory:

Definition 6.8. Spectral radius of A ∈ Rn×n is defined to
be

ρ(A) = max
1≤i≤n

|λi|

Recall ‖A‖2 = maxi
√
λi(ATA).

So if A = AT , then ‖A‖2 = ρ(A).

Theorem 6.9.

ρ(A) ≤ ‖A‖p for all p

Proof. Consider any eigenvalue, eigenvector pair λ, x; normal-
ized such that ‖x‖p = 1. From Ax = λx, we got

‖λx‖p ≤ ‖A‖p‖x‖p
=⇒ |λ|‖x‖p ≤ ‖A‖p‖x‖p
=⇒ |λ| ≤ ‖A‖p,

which implies that
ρ(A) ≤ ‖A‖p.

Definition 6.10. A ∈ Rn×n is convergent iff limn→∞An = 0.

Theorem 6.11. The following statements are equivalent

1) A is convergent

2) limn→∞An = 0

3) limn→∞ ‖An‖p = 0 for some p

4) limn→∞ ‖An‖p = 0 for all p

5) ρ(A) < 1

6) limn→∞(Anx) = 0 for all x

Recall that e(i+1) = Re(i). Note:

stationary iterative method converges

⇐⇒ lim
i→∞

e(i) = 0

⇐⇒ lim
i→∞

Rie(0) = 0

⇐⇒ R is convergent

⇐⇒ ρ(R) < 1

This is consistent with Theorems 6.6, 6.9, and 6.11.
Theorem 6.6: convergence of ‖R‖p < 1 for some p implies (by
Theorem 6.9) that ρ(R) < 1 (consistent with Theorem 6.11)
Note: it is possible that ρ(A) < 1, but ‖A‖p > 1 for some p.

7 Multigrid methods for Au = f

Use slides: “A multigrid tutorial” by Brandt, McCormick and
Henson. This method is useful for solving Au = f , when A is
sparse.
Recall: LU: W ∈ O(n3) Multigrid: W ∈ O(n).

7.1 Stationary iterative method

v(i+1) = v(i) +Br(i)

Rewrite:

v(i+1) = v(i) +B(f −Av(i))

= (I −BA)v(i) +Bf

v(i+1) = Rv(i) +Bf

Slide 16:
e(new) = Re(old)

we would like e(new) to be small.
case 1: oscillatory error (“high-frequency changes”)
→ is quickly reduced (“relaxed”) (just a few iterations)
case 2: “smooth error” (“low-frequency”)
→ many iterations are required to reduce the smooth error

Lecture 19

Slide 26:
Suppose R = RT , and ρ(R) = 0.1 = 10−1, choose e(0).
Note: ‖R‖2 = ρ(R).
Assume we require reduction in ‖e‖2 by 105 (d = 5).
How many iterations are required?
5 steps are sufficient to reduce the initial error by 105, because
each step reduces the error by at least 10.

In general, we require

‖e(n)‖
‖e(0)‖

≤ ‖R‖n = ρ(R)n ∼ 10−d

=⇒ n log10 ρ(R) ∼ −d

=⇒ n ∼ d

− log10 ρ(R)

(
=

5

− log10(0.1)
= 5

)
ρ(R) is called the convergence factor of the method. If

R 6= RT , then ρ(R) is still called the convergence factor of
the method, but its interpretation is valid only asymptotically.
Recall: ρ(R) ≤ ‖R‖p, but note: it is possible that ρ(R) < 1
and ‖R‖p > 1. Recall: ‖e(new)‖p ≤ ‖R‖p‖e(old)‖p, but:

ρ(R) = lim
n→∞

(
‖Rn‖1/np

)
Slide 31:

High-frequency error: smoothing, relaxation is efficient in re-
ducing the error.
Low-frequency error: relaxation is not efficient in reducing
the error.

Slide 37:
Nested Iteration:
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Smooth error on the fine grid (what remains after relaxation)
is relatively more oscillatory on the course grid.

Slide 42:
From coarse (Ω2h) to fine (Ωh): interpolation

vh = Ih2hv
2h

vh: vector of find grid.
v2h: vector coarse grid.
Ih2h: interpolation matrix from coarse to fine.

Lecture 20

Slide 51: Coarse error equation: Two possibilities:

1. PTAPe2h = PT r

2. Model problem discretized on Ωh : Ah, Ω2h : A2h.
On coarse level: use A2he2h = I2h

h rh, where I2h
h is the

restriction matrix.

We use the second version.
Slide 63:

initial guess vh0 → rh0 = f −Avh0 , ‖rh0‖2
first V-cycle vh1 → rh1 = f −Avh1 , ‖rh1‖2
second V-cycle vh2 → rh2 = f −Avh2 , ‖rh2‖2
. . .
every V-cycle reduces the current residual (approximately) by
a constant factor, which is (approximately) independent of h

‖rhi+1‖2
‖rhi ‖2

≈ ρ convergence factor (e.g. ρ ≈ 0.1)
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Slide 67:
1 Work unit (WU) = cost of 1 relaxation iteration on the
finest grid.
For example: in a sparse 2D model problem, let n = N2 (total
number of unknowns on the finest grid), A ∈ Rn×n.
Consider RBGS: work for 1 WU = O(n).
Consider Multigrid V(1,1)-cycle: work < 8

3 WUs = O(n).
(O(n2) if not sparse for both)
Note: multigrid is a “divide-and-conquer” algorithm.

Slide 69:
1D model problem13 → exact solution u(x). Define:

u(h): exact solution vector u(x) sampled on the discrete grid.

uh: exact solution of linear system Ahuh = fh.

vh: approximate solution of Ahuh = fh.

Discretization error: Ei = u(xi) − uhi =⇒ ‖E‖h ≤ Khp

(in our case, p = 2).

Algebraic error: ehi = uhi − vhi

Total error: ei = u(xi)− vhi
13ODE, continuous problem

Note: e = u(h) − vh = u(h) − uh + uh − vh.
Slide 72:

MG cost to reduce algebraic error to the level of discretization

W = O(Nd logN) = O(n logN) where n = Nd

O(logN) V-cycles

O(Nd) work per V-cycle

Grid norm of a vector: (‖ · ‖h)

‖rh‖h = h‖rh‖2
‖eh‖h = h‖eh‖2

Why the h?
Consider functions u(x, y), v(x, y) on Ω. define:

‖u(x, y)− v(x, y)‖2 =

√∫∫
Ω

(u(x, y)− v(x, y))2dxdy

≈
√∑

i

∑
j

(u(xi, yj)− v(xi, yj))2∆x∆y

= h

√∑
i

∑
j

(uhij − vhij)2 (∆x = ∆y = h)

= h‖uh − vh‖2

7.2 Red-Black Gauss-Seidel

Traditional GS (“lexicographic”):

vnewi =
1

aii

fi −∑
j<1

aijv
new
j −

∑
j>i

aijv
old
j


All GS: compute vnewi from equation i, using any new val-
ues that were computed previously. In lexicographic GS, we
consider equations in the order of the rows of A.

2D model problem: Suppose N = 7 (# of interior points),

A ∈ R72×72

, and u ∈ R72

= R49.

Lexicographic: GS is sequential (no parallelism).

Red-Black GS: First update all the red points → can be
done in parallel: because red points only depend on black
points. (make sure all new red values are visible to the
black points). Then update all the black points, using
the new red values → can be done in parallel.

Definition 7.1. The multigrid convergence factor is defined
by

ρMG :=
‖ri+1‖2
‖ri‖2

(in the “asymptotic” region)

where ri are the residuals after multigrid V-cycle i.

Note: ρMG is small for the 2D model problem for all prob-
lem sizes.
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Proposition 7.2. ρMG is small and bounded uniformly in h:

∃c < 1 : ρMG < c < 1 ∀h

Lecture 22

7.3 Full Multigrid Method (FMG)

Find a better initial guess on grid h by finding an approximate
solution on grid 2h and interpolating it up to grid h. (Do so
recursively using smaller V-cycles).

7.4 Summary

To reduce ‖r‖h by a mixed factor, the V-cycle multigrid
method requires:
Total work = O(n) (linear scaling), since work per V-cycle is
O(n), and the number of V-cycles required is constant in n.

To achieve convergence up to discretization error, the V-
cycle multigrid method requires:
Total work = O(N2 logN) (not linear in n), since work per
V-cycle is O(n), but the number of V-cycles grows with
O(logN).

To achieve convergence up to discretization error, the full
multigrid method requires:
Total work = O(Nd) = O(n) (linear in n), since only one full
V-cycle is required.

8 Conjugate Gradient (CG) Method
for Ax = b, [4, Ch. 38]

8.1 Algorithm

Let A ∈ Rm×m be SPD. Let x∗ be the exact solution of Ax =
b. Let en = x∗ − xn be the error (n = 0, 1, 2, . . . ). Let x0 be
the initial guess, and r0 = b−Ax0, the initial residual.

Definition 8.1. Define Krylov space to be:

Kn = span{r0, Aro, A
2r0, . . . , A

n−1r0}.

CG is an iterative method that proceeds as follows:
In step n (n = 0, 1, 2, . . . ), find qn ∈ Kn s.t.
xn = xn−1 + qn minimizes

‖en‖A = ‖x∗ − xn‖A = ‖x∗ − xn−1 − qn‖A

Note: the minimizer qn can be computed very efficiently.
Often the error is reduced very fast (only a small number of
iterations is needed).

Algorithm 1 Conjugate Gradient (CG)

1: Choose x0

2: r0 ← b−Ax0

3: p0 ← r0

4: n← 0
5: repeat
6: n← n+ 1
7: αn ← (rTn−1rn−1)/(pTn−1Apn−1)
8: xn ← xn−1 + αnpn−1

9: rn ← rn−1 − αnApn−1

10: βn ← (rTn rn)/(rTn−1rn−1)
11: pn ← rn + βnpn−1

12: until convergence criterion is satisfied

Notes:

• Efficient implementation: reuse certain intermediate re-
sults.

• pn−1 is called a “search direction” (αn is computed such
that the optimal solution in the direction pn−1 is found).

• We will show that every CG step minimizes ‖en‖A over
all

qn = αnpn−1 ∈ Kn

• Even though we optimize over the whole of Kn, we only
need to store one previous rn and pn.

• Work per step (assume sparse A).

1. 1 matrix-vector product:

(Apn−1) : W = O(m)

2. 2 scalar products:

rTn rn and pTn−1Apn−1 : W = O(m) each

3. 3 vector “multiply-add”:

xn−1 + αnpn−1

rn−1 + αn(Apn−1)
rn + βnpn−1

W = O(m) each

total work per CG step: O(m).

8.2 CG as an optimization problem

Note: Ax = b with A SPD has a unique solution x∗.
Let e = x∗ − x. Observe:

‖x∗ − x‖2A = ‖e‖2A = eTAe = (x∗ − x)TA(x∗ − x)

= xTAx− 2xTAx∗ + xT∗Ax∗ (use A = AT )

= xTAx− 2xT b+ xT∗ b

= 2φ(x) + xT∗ b = 2φ(x)− 2φ(x∗)

where

φ(x) =
1

2
xTAx− xT b

Proposition 8.2. x∗ is the unique minimizer of φ(x) over
Rm. Alternatively we can say that solving Ax = b is equivalent
to minimizing φ(x) over Rm.
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8.3 Steepest descent algorithm

Property: ∇φ(x) point in the direction of steepest ascent.

−∇φ(x) points in the direction of steepest descent.

−∇φ(x) = −∇(
1

2
xTAx− bTx)

= −(Ax− b) (since A = AT )

= b−Ax = r(x)

The general idea:
Have x0, x1, x2, . . . , xn, . . . .
Start from x0:

Compute −∇φ(x0) = r0 = b−Ax0

Let x1 = x0 + α1r0 (r0 is the search direction)
Find the optimal approximation (smallest φ(x1)) in the di-

rection of r0 (steepest descent direction).
Determine α1 s.t. φ(x1) is minimal.

We require d
dα1

(φ(x1(α1))) = 0:

∇φ(x1)T
dx1

dα1
= 0

−rT1 r0 = 0

−(b−Ax1)T r0 = 0

(A(x0 + α1r0)− b)T r0 = 0

(−r0 + α1Ar0)T r0 = 0

=⇒ α1 =
rT0 r0

rTAr0

Note:

r1 = b−Ax1

= b−A(x0 + α1r0)

= r0 − α1Ar0

Algorithm 2 Steepest Descent (SD)

1: Choose x0

2: r0 ← b−Ax0

3: n← 0
4: repeat
5: n← n+ 1
6: αn ← (rTn−1rn−1)/(rTn−1Arn−1)
7: xn ← xn−1 + αnrn−1

8: rn ← rn−1 − αnArn−1

9: until convergence criterion is satisfied

Compare with CG:

• SD also has W = O(m) per step (1 matrix-vector prod-
uct, 2 scalar products, 2 scalar multiply-adds).

• Similar to CG, but pn = rn in SD.

• CG also does 1D minimization in step 7 (Algorithm 3),
but pn is chosen s.t. the minimization is also automati-
cally over the whole Kn.

• SD can converge very slowly if κ(A) = λmax

λmin
� 1.

CG often converges much faster (in particular, conver-
gence in at most m steps).
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Lecture 23

8.4 Examples and Convergence of CG and
SD methods

Example 8.3. Solve Ax = b:

x =

[
x1

x2

]
, A =

[
3 2
2 6

]
, b =

[
2
−8

]
,

=⇒ x∗ =

[
2
−2

]
Eigenvectors of A:

w1 =

[
−2
1

]
, λ1 = 2 (A SPD)

w2 =

[
1
2

]
, λ2 = 7

Figure 8.1: Level curves of φ(x).

Note:

‖x∗ − x‖2A = 2φ(x)− φ(x∗)

=⇒ φ(x∗ + w1) = φ(x∗) +
1

2
‖w1‖2A

= φ(x∗) +
1

2
λ1‖w1‖22

φ(x∗ + w2) = φ(x∗) +
1

2
λ2‖w2‖22

Recall: κ2(A) = ‖A‖2‖A−1‖2 = λmax

λmin
(A SPD).

Note: κ2(A) large ⇐⇒ strongly elongated ellipsoids κ2(A) =
1 ⇐⇒ circle (sphere)

Recall: Steepest Descent Method (Algorithm 2)
Note that computing αn gives us the optimal point in search
direction (1D minimization). Also rn−1 is the search direc-
tion:

rn−1 = −∇φ(xn−1) = direction of steepest descent

Problem: SD may “zig-zag” (slow convergence) if κ(A) is
large.

Figure 8.2: Example of how for large κ(A), SD may have slow
convergence.

In contrast, CG most often converges much faster (no zig-
zag effect) (at most m steps)

Looking ahead: (κ = κ2(A))

Theorem 8.4. For the CG method, we have:

‖en‖A
‖e0‖A

≤ 2

(√
κ− 1√
κ+ 1

)n
where (

√
κ− 1)(

√
κ+ 1) is the error reduction per step.

For example,

κ = 4 =⇒
√
κ− 1√
κ+ 1

=
2− 1

2 + 1
=

1

3
← nice reduction

κ = 100 =⇒
√
κ− 1√
κ+ 1

=
10− 1

10 + 1
=

9

11
← not so nice

Theorem 8.5. For the SD method, we have:

‖en‖A
‖e0‖A

≤
(
κ− 1

κ+ 1

)n
where (κ− 1)(κ+ 1) is the error reduction per step.

For example,

κ = 4 =⇒ κ− 1

κ+ 1
=

4− 1

4 + 1
=

3

5
← ok reduction

κ = 100 =⇒ κ− 1

κ+ 1
=

100− 1

100 + 1
=

99

101
← terrible

How many iterations of CG are required to reduce the error
by a given factor, e.g. 108?
Require:

‖en‖A
‖e0‖A

≤ ε (e.g. ε = 10−8)

Require:

2

(√
κ− 1√
κ+ 1

)n
≈ ε

where n is the # of steps required. Alternatively we need

2

(
1− 2√

κ+ 1

)n
≈ ε

or

n log

(
1− 2√

κ+ 1

)
≈ log

(ε
2

)
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Assume κ� 1, and |t| � 1. Then

√
κ+ 1 ≈

√
κ

log(1 + t) ≈ t

=⇒ n

(
−2√
κ

)
≈ log

(ε
2

)
or n ≈

√
κ

2
log

(
2

ε

)
Conclusion:
CG: n ∈ O(

√
κ) iterations required to reach convergence tol-

erance. Similarly: SD: n ∈ O(κ) iterations required.

Example 8.6. 2D model problem.

κ(Ah) ≈ 4

π2
m (m = total # of unknowns)

CG, SD: O(m) work per iteration.
Conclusion:

CG: O(
√
κ) = O(

√
m) iterations

O(m) work per iteration

=⇒ total work = O(m
3/2)

SD: O(κ) = O(m) iterations (like GS)

O(m) work per iteration

=⇒ total work = O(m2)

MG: total work = O(m)

Lecture 24

8.5 Properties of the CG algorithm

Recall the conjugate gradient algorithm:

Algorithm 3 Conjugate Gradient (CG)

1: Choose x0

2: r0 ← b−Ax0

3: p0 ← r0

4: n← 0
5: repeat
6: n← n+ 1
7: αn ← (rTn−1rn−1)/(pTn−1Apn−1)
8: xn ← xn−1 + αnpn−1

9: rn ← rn−1 − αnApn−1

10: βn ← (rTn rn)/(rTn−1rn−1)
11: pn ← rn + βnpn−1

12: until convergence criterion is satisfied

Recall the Krylov space:

Kn = span{r0, Ar0, . . . , A
n−1r0︸ ︷︷ ︸

n vectors

}

For simplicity, assume x0 = 0 =⇒ r0 = b−Ax0 = b.

=⇒ Kn = span{r0, Ar0, . . . , A
n−1r0} = Vr0

= span{b, Ab, . . . , An−1b} = Vb

Theorem 8.7. Assume rn−1 6= 0 (not converged yet). Then

Kn = span{r0, r1, r2, . . . , rn−1} = Vr
= span{p0, p1, p2, . . . , pn−1} = Vp
= span{x1, x2, . . . , xn} = Vx

 a

Moreover,
rTn rj = 0 (j < n)
pTnApj = 0 (j < n)

}
b

Proof.

a =⇒ Vx = Vp follows from line 8 in the CG algorithm:
xn = xn−1 + αnpn−1. Two steps:

(a) Vp ⊂ Vx: every element of Vp is in Vx. This is
true because pn−1 is a linear combination of xn and
xn−1.

(b) Vx ⊂ Vp: because

x1 = α1p0 (x0 = 0)

x2 = x1 + αap1

. . .

We use induction: assume xi−1 is a linear combi-
nation of {p0, . . . , pi−2}; then, from line 8, xi is a
linear combination of {p0, . . . , pi−1}.

Therefore Vx = Vp.
=⇒ Vr = Vp follows from line 11: pn = rn + βnpn−1.
Observe: p0 = r0. Proof is the same as for Vx = Vp.
=⇒ Vr = Vb follows from line 9 and Vr = Vp.

rn = rn−1 − αnApn−1.

Observe: p0 = r0 = b (base case), which implies that
span{r0} = span{b}.
Induction: Assume

span{r0, . . . , ri} = span{b, Ab, . . . , Aib}
(= span{p0, . . . , pi} ∵ Vr = Vp).

Then from line 9 we get:

ri+1 = ri − αi+1Api,

then ri+1 ∈ span{b, Ab, . . . , Ai+1b}
since pi ∈ span{b, . . . , Aib}

so Api ∈ span{Ab, . . . , Ai+1b}
and ri ∈ span{b, . . . , Aib}

and thus Ai+1b ∈ span{r0, . . . , ri}
since Api ∈ span{ Ab, . . . , Aib︸ ︷︷ ︸

∈span{r0,...,ri}

, Ai+1b}

Therefore span{r0, . . . , ri+1} = span{b, Ab, . . . , Ai+1b}.
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b Proof by induction: Assume

rTn−1rj = 0 (j < n− 1)

pTn−1Apj = 0 (j < n− 1)

Base case:
rT1 r0 = 0
pT1 Ap0 = 0

}
can be shown

we will show

rTn rj = 0 (j < n)

pTnApj = 0 (j < n)

To show that rTn rj = 0 (j < n), use line 9:

rn = rn−1 − αnApn−1

=⇒ rTn rj = rTn−1rj − αnpTn−1Arj

Case j < n− 1:

rTn−1rj = 0 by induction
pTn−1Arj = 0 by induction ∵ Vr = Vp

}
=⇒ rTn rj = 0

Case j = n− 1: rTn rj = 0 if

αn =
rTn−1rn−1

pTn−1Arn−1
.

Why? Compare with line 7 which gives the same αn
because

rn−1 = pn−1 − βn−1pn−2 from line 11

=⇒
rTn−1rn−1

pTn−1Arn−1
=

rTn−1rn−1

pTn−1A(pn−1 − βn− 1pn−2)

=
rTn−1rn−1

pTn−1Apn−1

∵ pTn−1Apn−2 = 0
by induction

= αn from the CG algorithm

To show that pTnApj = 0 (j < n), use line 11:

pn = rn + βnpn−1

to get pTnApj = rTnApj + βnp
T
n−1Apj .

Case j < n− 1: rTnApj = 0, since

pj ∈ span{b, . . . , An−2b} (∵ Vp = Bb)

Apj ∈ span{Ab, . . . , An−1b}
⊂ span{r0, . . . , rn−1} (∵ Vr = Vb)

=⇒ rTnApj = 0 (j < n− 1) (∵ rTn rj = 0 (j < n))

Case j = n− 1: pTnApj = 0 if

βn =
−rTnApn−1

pTn−1Apn−1

Show that this equals the βn from the CG algorithm:

−rTnApn−1

pTn−1Apn−1
=
−rTnApn−1αn
rTn−1rn−1

=
−rTn (rn−1 − rn)

rTn−1rn−1

=
rTn rn

rTn−1rn−1
= βn from the CG algorithm

=⇒ pTnApj = 0 (j < n)

Note: rTn rj = 0 (j < n): residual orthogonal.

Proposition 8.8. CG needs at most m iterations to converge
exactly (assuming no rounding errors).

Proof. Consider r0, r1, . . . , rn−1, m vectors.

Case 1: rm−1 = 0: OK (we have converged within m steps)

Case 2: rm−1 6= 0: =⇒ rm = 0 because there are at most
m non-zero orthogonal vectors in Rm (r0, . . . , rm−1), and
rm has to be orthogonal to all of them.

Note: pTnApj = 0 (j < n), “the search directions are A-
conjugate” (A-orthogonal).
=⇒ “conjugate gradient method”

Theorem 8.9. CG selects xn ∈ Kn with

Kn = span{r0, . . . , rn−1}

such that ‖en‖A is minimal. =⇒ ‖en‖A decreases monoton-
ically.
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